University of Tasmania
Browse

File(s) under permanent embargo

Early life exposure to coal mine fire smoke emissions and altered lung function in young children

journal contribution
posted on 2023-05-20, 04:44 authored by Shao, J, Graeme ZoskyGraeme Zosky, Hall, GL, Amanda WheelerAmanda Wheeler, Dharmage, S, Melody, S, Marita DaltonMarita Dalton, Foong, RE, O'Sullivan, T, Grant WilliamsonGrant Williamson, Katherine ChappellKatherine Chappell, Abramson, MJ, Fay JohnstonFay Johnston

Background and objective: Long‐term respiratory risks following exposure to relatively short periods of poor air quality early in life are unknown. We aimed to evaluate the association between exposure to a 6‐week episode of air pollution from a coal mine fire in children aged <2 years, and their lung function 3 years after the fire.

Methods: We conducted a prospective cohort study. Individual exposure to 24‐h average and peak concentrations of particulate matter with an aerodynamic diameter < 2.5 μm in diameter (PM2.5) during the fire were estimated using dispersion and chemical transport modelling. Lung function was measured using the forced oscillation technique (FOT), generating standardized Z‐scores for resistance and reactance at a frequency of 5 Hz (Rrs5 and Xrs5), and area under the reactance curve (AX). We used linear regression models to assess the associations between PM2.5 exposure and lung function, adjusted for potential confounders.

Results: Of the 203 infants originally recruited, 84 aged 4.3 ± 0.5 years completed FOT testing. Median (interquartile range, IQR) for average and peak PM2.5 were 7.9 (6.8-16.8) and 103.4 (60.6-150.7) μg/m3, respectively. The mean ± SD Z‐scores for Rrs5, Xrs5 and AX were 0.56 ± 0.80, -0.76 ± 0.88 and 0.72 ± 0.92, respectively. After adjustment for potential confounders including maternal smoking during pregnancy, a 10 μg/m3 increase in average PM2.5 was significantly associated with worsening AX (β‐coefficient: 0.260; 95% CI: 0.019, 0.502), while the association between a 100‐μg/m3 increase in peak PM2.5 and AX was borderline (0.166; 95% CI: -0.002, 0.334).

Conclusion: Infant exposure to coal mine fire emissions could be associated with long‐term impairment of lung reactance.

History

Publication title

Respirology

Volume

25

Pagination

198-205

ISSN

1323-7799

Department/School

Menzies Institute for Medical Research

Publisher

Blackwell Publishing Asia

Place of publication

54 University St, P O Box 378, Carlton, Australia, Victoria, 3053

Rights statement

© 2019 Asian Pacific Society of Respirology

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified; Neonatal and child health

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC