University of Tasmania
Browse

File(s) under permanent embargo

Early responses to salt stress in quinoa genotypes with opposite behavior

journal contribution
posted on 2023-05-21, 04:14 authored by Vita, F, Ghignone, S, Bazihizina, N, Rasouli, F, Sabbatini, L, Ali Kiani-Pouya, Kiferle, C, Sergey ShabalaSergey Shabala, Balestrini, R, Mancuso, S
Soil salinity is among the major abiotic stresses that plants must cope with, mainly in arid and semiarid regions. The tolerance to high salinity is an important agronomic trait to sustain food production. Quinoa is a halophytic annual pseudo-cereal species with high nutritional value that can secrete salt out of young leaves in external non-glandular cells called epidermal bladder cells (EBC). Previous work showed high salt tolerance, but low EBC density was associated with an improved response in the early phases of salinity stress, mediated by tissue-tolerance traits mainly in roots. We compared the transcript profiling of two quinoa genotypes with contrasting salt tolerance patterning to identify the candidate genes involved in the differentially early response among genotypes. The transcriptome profiling, supported by in vitro physiological analyses, provided insights into the early-stage molecular mechanisms, both at the shoot and root level, based on the sensitive/tolerance traits. Results showed the presence of numerous differentially expressed genes among genotypes, tissues, and treatments, with genes involved in hormonal and stress response upregulated mainly in the sensitive genotype, suggesting that tolerance may be correlated to restricted changes in gene expression, at least after a short salt stress. These data, showing constitutive differences between the two genotypes, represent a solid basis for further studies to characterize the salt tolerance traits. Additionally, new information provided by this work might be useful for the development of plant breeding or genome engineering programs in quinoa.

History

Publication title

Physiologia Plantarum

Volume

173

Issue

4

Pagination

1392-1420

ISSN

0031-9317

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Blackwell Munksgaard

Place of publication

35 Norre Sogade, Po Box 2148, Copenhagen, Denmark, Dk-1016

Rights statement

© 2021 Scandinavian Plant Physiology Society

Repository Status

  • Restricted

Socio-economic Objectives

Industrial crops not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC