Effect of gravitational gradients on cardiac filling and performance
Methods: This was a prospective observational study with tilt-induced hydrostatic stress. Echocardiographic images were recorded at four different tilt angles in 13 astronauts, to mimic varying degrees of gravitational stress: 0° (supine, simulating microgravity of space), 22° head-up tilt (0.38 G, simulating Martian gravity), 41° (0.66 G, simulating approximate G load of a planetary lander), and 80° (1 G, effectively full Earth gravity). These images were then analyzed offline to assess the effects of preload reduction on anatomical and functional parameters.
Results: Although three-dimensional end-diastolic, end-systolic, and stroke volumes were significantly reduced during tilting, ejection fractions showed no significant change. Mitral annular e' and a' velocities were reduced with increasing gravitational load (P < .001 and P = .001), although s' was not altered. Global longitudinal strain (GLS; from -19.8% ± 2.2% to -14.7% ± 1.5%) and global circumferential strain (GCS; from -29.2% ± 2.5% to -26.0% ± 1.8%) were reduced significantly with increasing gravitational stress (both P < .001), while the change in strain rates were less certain: GLSR (P = .049); GCSR (P = .55). End-systolic elastance was not consistently changed (P = .53), while markers of cardiac afterload rose significantly (effective arterial elastance, P < .001; systemic vascular resistance, P < .001).
Conclusions: Preload modification with gravitational loading alters most hemodynamic and echocardiographic parameters including e' velocity, GLS, and GCS. However, end-systolic elastance and strain rate appear to be more load-independent measures to examine alterations in the cardiovascular function during postural and preload changes, including microgravity.
History
Publication title
Journal of the American Society of EchocardiographyVolume
30Issue
12Pagination
1180-1188ISSN
0894-7317Department/School
Menzies Institute for Medical ResearchPublisher
MosbyPlace of publication
Inc, 11830 Westline Industrial Dr, St Louis, USA, Mo, 63146-3318Rights statement
Copyright 2017 by the American Society of Echocardiography.Repository Status
- Restricted