University of Tasmania
Browse

File(s) not publicly available

Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll

journal contribution
posted on 2023-05-16, 16:10 authored by Sergey ShabalaSergey Shabala, Hariadi, YC
Considering the physiological significance of Mg homeostasis in plants, surprisingly little is known about the molecular and ionic mechanisms mediating Mg transport across the plasma membrane and the impact of Mg availability on transport processes at the plasmalemma. In this study, a non-invasive ion-selective microelectrode technique (MIFE) was used to characterize the effects of Mg availability on the activity of plasma membrane H+, K+, Ca2+, and Mg2+ transporters in the mesophyll cells of broad bean (Vicia faba L.) plants. Based on the stoichiometry of ion-flux changes and results of pharmacological experiments, we suggest that at least two mechanisms are involved in Mg2+ uptake across the plasma membrane of bean mesophyll cells. One of them is a non-selective cation channel, also permeable to K+ and Ca2+. The other mechanism, operating at concentrations below 30 μM, was speculated to be an H+/Mg+ exchanger. Experiments performed on leaves grown at different levels of Mg availability (from deficient to excessive) showed that Mg availability has a significant impact on the activity of plasma-membrane transporters for Ca2+, K+, and H+. We discuss the physiological significance of Mg-induced changes in leaf electrophysiological responses to light and the ionic mechanisms underlying this process. © Springer-Verlag 2005.

History

Publication title

Planta

Volume

221

Pagination

56-65

ISSN

0032-0935

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Springer-Verlag

Place of publication

Germany

Repository Status

  • Restricted

Socio-economic Objectives

Field grown vegetable crops

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC