posted on 2023-05-18, 13:42authored byHorgan, HJ, Anandakrishnan, S, Alley, RB, Burkett, PG, Peters, LE
Abrupt changes in crystal-orientation fabric (COF), and therefore viscosity, are observed near the base of the ice sheet throughout West Antarctica. We report on active-source seismic observations from WAIS Divide, mid-stream and downstream on Thwaites Glacier, and the onset region of Bindschadler Ice Stream. These data reveal a prevalence of englacial seismic reflectivity in the bottom quarter of the ice sheet. The observed seismic reflectivity is complex but largely bed-conformable, with long-spatial-wavelength features observed in the flow direction and short-wavelength features observed across flow. A correspondence of englacial structures with bed features is also observed. We determine the origin of the reflectivity to be abrupt changes in the COF of ice, based on the following: (1) observations of englacial reflectivity are consistent with current knowledge of COF within ice sheets, (2) englacial reflectivity caused by COF contrasts requires the simplest genesis, especially at ice divides, and (3) amplitude analysis shows that the observed englacial reflectivity can be explained by contrasts in seismic velocity due to COF changes. We note that the downstream increase in the quantity and complexity of observations indicates that direct observations of COF at ice divides likely underestimate the role that fabric plays in ice-sheet dynamics.
History
Publication title
Journal of Glaciology
Volume
57
Issue
204
Pagination
639-650
ISSN
0022-1430
Department/School
Institute for Marine and Antarctic Studies
Publisher
Int Glaciol Soc
Place of publication
Lensfield Rd, Cambridge, England, Cb2 1Er
Rights statement
Copyright 2011 International Glaciological Society.
Repository Status
Open
Socio-economic Objectives
Effects of climate change on Antarctic and sub-Antarctic environments (excl. social impacts)