Enhanced deposition of atmospheric soluble iron by intrusions of marine air masses to East Antarctica
Bio-essential iron can relieve nutrient limitation and stimulate marine productivity in the Southern Ocean. The fractional iron solubility of aerosol iron is an important variable determining iron availability for biological uptake. However, estimates of dissolved iron (dFe; iron < 0.2 μm) and the factors driving the variability of fractional iron solubility in pristine air masses are largely unquantified. To constrain inputs of fractional iron solubility to remote East Antarctic waters, dFe, total dissolvable iron (TDFe), trace elements and refractory black carbon were analyzed in a 9-year-old snow pit (2005-2014) from a new ice core site at Aurora Basin North (ABN) in Wilkes Land, East Antarctica. Extremely low annual dFe deposition fluxes were estimated (0.2 x 10-6 g m-2 y-1), while annual TDFe deposition fluxes (70 x 10-6 g m-2 y-1) were comparable to other Antarctic sites. Total dissolvable iron is dominantly sourced from mineral dust. Unlike coastal Antarctic sites where the variability of fractional iron solubility in modern snow is explained by a mixture of dust and biomass burning sources, dFe deposition and fractional iron solubility at ABN (ranging between 0.1 and 6 %) is enhanced in episodic high precipitation events from synoptic warm air masses. Enhanced fractional iron solubility reaching the high elevation site at ABN is suggested through the mechanism of cloud processing of background mineral dust that modifies the dust chemistry and increases iron dissolution during long-range transport. This study highlights a complex interplay of sources and processes that drive fractional iron solubility in pristine air masses.
Funding
Australian Research Council
History
Publication title
Journal of Geophysical Research: AtmospheresVolume
127Issue
13Article number
e2022JD036586Number
e2022JD036586Pagination
1-16ISSN
2169-8996Department/School
Institute for Marine and Antarctic StudiesPublisher
Wiley-Blackwell Publishing Inc.Place of publication
United StatesRights statement
© 2022. The Authors. This is an open access article under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Repository Status
- Open