posted on 2023-05-20, 09:11authored byTao, K, Zheng, W, Jiang, D
Acoustic emission (AE) and vibration signal are significant criteria of damage identification in structural health monitoring (SHM) engineering. Multi-disciplinary knowledge and synergistic parameter effects are technical challenges for damage assessment modelling. This study proposes a structural damage cause-and-effect analysis method based on parameter information entropy. Monitoring data is used to form a time-domain feature wave (TFW). The structural strength degradation factor (DF) would be used to define structural damage information entropy (SDIE) vector. The structural damage cause and effect model is developed in a probability sense. A fatigue index is adopted for damage assessment, and a causal strength index is proposed to locate the most likely damage cause. A sandstone-truss structure experiment was conducted to show that the proposed method is effective for damage evaluation and the experimental results provide strong support. This is a statistical damage identification method based on causal logic uncertainty, meaning a complicated mechanics calculation can be avoided.
History
Publication title
IEEE Access
Volume
7
Pagination
172515-172525
ISSN
2169-3536
Department/School
School of Engineering
Publisher
Institute of Electrical and Electronics Engineers
Place of publication
US
Rights statement
Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
Repository Status
Open
Socio-economic Objectives
Civil building management and services; Information systems, technologies and services not elsewhere classified