University of Tasmania
Browse

File(s) under permanent embargo

Evaluating waste rock mineralogy and microtexture during kinetic testing for improved acid rock drainage prediction

journal contribution
posted on 2023-05-17, 17:53 authored by Anita Parbhakar-Fox, Bernd Lottermoser, Bradshaw, D

This study integrates detailed mineralogical and microtextural analyses of waste rock with the results of standard kinetic test procedures to identify the mineralogical changes that influence leachate chemistry over time. The integration of mineralogy and texture provides the opportunity for improved mine waste management strategies and acid rock drainage (ARD) prediction.

Waste rock material from an abandoned gold mine in northern Queensland, Australia, was subjected to column leach kinetic testing over a 30 week period. The column feed comprised of a range of waste rock lithologies (porphyritic rhyolite, massive arsenopyrite, massive pyrite +- galena, and semi-massive polysulphide). In total, 12 individual columns were established to represent six lithologies prepared to two different size fractions (-10 mm and -4 mm). The mineralogy and microtextural characteristics of the column feed material was defined using quantitative X-ray diffractometry (QXRD), scanning electron microscopy and laser ablation (LA ICPMS) at the start of kinetic tests, and at 5 week intervals during the length of the tests. These data were directly correlated with leachate chemistry (i.e., pH, SO4 and select elements).

Results of this study indicated that sulphide oxidation was strongly influenced by the morphology of sulphide minerals, their trace element contents, the presence of mineral micro-inclusions and galvanic interactions with other sulphide minerals. Waste rock with abundant arsenopyrite was consistently the most acid forming, and oxidised to scorodite (enriched in Zn, Pb and Cu). Pyrite was commonly As-rich as indicated by LA-ICPMS mapping. QXRD results indicated that the abundance of rhomboclase, jarosite, alunite and hydrous ferric oxides increased over time. Galena weathered rapidly to porous anglesite, particularly when in direct physical contact with pyrite. Sphalerite contents decreased consistently over the 30 weeks implying its oxidation, however few reaction products were directly observed. By week 30, the -4 mm fraction material generated lower pH leachate, higher mass release of elements and sulphate for the majority of samples. This indicates that the particle size used in kinetic tests can exert a significant control on leachate chemistry, especially in the absence of abundant neutralising minerals. This contribution demonstrates the value of integrating mineralogy and microtextural analyses during kinetic testwork to improve the interpretation of sulphide oxidation for better prediction of ARD.

History

Publication title

Minerals Engineering

Volume

52

Pagination

111-124

ISSN

0892-6875

Department/School

School of Natural Sciences

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

Oxford, England

Rights statement

Crown Copyright 2013 Published by Elsevier Ltd

Repository Status

  • Restricted

Socio-economic Objectives

Management of solid waste from mineral resource activities

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC