University of Tasmania
Browse

File(s) under permanent embargo

Experimental evidence for long-term coexistence of copiotrophic and oligotrophic bacteria in pelagic surface seawater

journal contribution
posted on 2023-05-20, 19:34 authored by Li, Y, Wang, Z-B, Zhang, X-Y, Dang, Y-R, Sun, L-L, Zhang, W-P, Fu, H-H, Yang, G-P, Wang, M, Andrew McMinnAndrew McMinn, Chen, X-L, Chen, Y, Wang, S, Zhang, Y-Z, Qin, Q-L
Most marine copiotrophic bacteria can produce extracellular enzymes to degrade biopolymers into bio‐available smaller solutes, while oligotrophic bacteria usually cannot. Bacterial extracellular enzymes and enzymatic products can be a common resource that could be utilized by both copiotrophs and oligotrophs; when present, oligotrophs may outcompete the enzyme‐producing copiotrophs. However, copiotrophs and oligotrophs consistently coexist in the ocean. How they maintain coexistence has still not been experimentally studied. In this study, the interaction and coexistence of a copiotroph and an oligotroph, isolated from the same surface seawater sample and utilizing the same proteinaceous substrate, were experimentally investigated. The copiotroph could secrete extracellular proteases to degrade and then utilize the proteinaceous substrate. The oligotroph was unable to utilize the proteinaceous substrate by itself, but could grow by using the hydrolysate amino acids. The copiotroph outcompeted the oligotroph by adsorbing the amino acids quickly and having a higher growth rate in the rich medium. The oligotroph survived by adapting to low concentration of nutrients. The copiotroph and oligotroph were able to maintain long‐term (up to 142 days) coexistence in the laboratory. This study indicates that differences in the utilization of different concentrations of nutrients can drive the coexistence of marine copiotrophs and oligotrophs.

History

Publication title

Environmental Microbiology

Volume

23

Pagination

1162-1173

ISSN

1462-2912

Department/School

Institute for Marine and Antarctic Studies

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Rights statement

Copyright 2020 Society for Applied Microbiology and John Wiley & Sons Ltd

Repository Status

  • Restricted

Socio-economic Objectives

Coastal or estuarine biodiversity

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC