University of Tasmania
Browse

File(s) under permanent embargo

Experimental modelling of transverse oscillations in aquaculture netting parallel to the flow-sounds baffling

journal contribution
posted on 2023-05-18, 15:18 authored by Johnson, A, Balash, C
Numerous studies have been undertaken to improve the viability, durability and suitability of materials and methods used for aquaculture enclosures. While many of the previous studies considered macro-deformation of nets, there is a paucity of information on netting micro-deformation. When aquaculture pens are towed, industry operators have observed the motion described as “baffling” – the transverse oscillation of the net planes parallel and near parallel to the flow. The difficulty to observe and assess baffling motion in a controlled experimental environment is to sufficiently reproduce netting boundary conditions and the flow environment experienced at sea. The focus of the present study was to develop and assess experimental methods for visualisation and quantification of these transverse oscillations. Four netrig configurations with varied boundary conditions and model-netting properties were tested in a flume tank. While the Reynolds number was not equivalent to full-scale, usage of the pliable and fine mesh model netting that enabled baffling to develop at low flow velocities was deemed to be of a larger relevance to this initial study. Baffling was observed in the testing frame that constrained the net sheet on the leading edge, similarly to a flag attachment onto a pole. Baffling motion increased the hydrodynamic drag of the net by 35%–58% when compared to the previously developed formula for taut net sheets aligned parallel to the flow. Furthermore, it was found that the drag due to baffling decreased with the increasing velocity over the studied Reynolds numbers (below 200); and the drag coefficient was non-linear for Reynolds numbers below 120. It is hypothesised that baffling motion is initially propagated by vortex shedding of the netting twine which causes the netting to oscillate; there after the restoring force causes unstable pressure differences on each side of the netting which excites the amplitude of the netting oscillations.

History

Publication title

China Ocean Engineering

Volume

29

Pagination

391-400

ISSN

0890-5487

Department/School

Australian Maritime College

Publisher

China Ocean Press

Place of publication

International Dept, 8 Da Hui Shi, Beijing, Peoples R China, 100081

Rights statement

Copyright 2015 Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in engineering

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC