University of Tasmania
Browse

File(s) under permanent embargo

Factors influencing the preparation of hollow polymer-graphene oxide microcapsules via Pickering miniemulsion polymerization

journal contribution
posted on 2023-05-18, 09:28 authored by Teo, GH, Ng, YH, Zetterlund, PB, Stuart ThickettStuart Thickett
The synthesis of hollow, cross-linked polymer particles (‘capsules’) via Pickering miniemulsion polymerization using graphene oxide (GO) nanosheets as sole surfactant is reported. The influence of monomer, cross-linker and initiator type was studied, in addition to hydrophobe loading and initiator concentration. The desired hollow capsule morphology was shown to be strongly dependent on the choice of cross-linker; an aromatic crosslinker (divinylbenzene) consistently yielded hollow structures as determined by transmission electron microscopy, whereas ethylene glycol dimethacrylate typically resulted in polymer particles with a solid core. The use of an aromatic monomer with high propagation rate coefficient (benzyl methacrylate) and a strongly oil-soluble initiator, lauroyl peroxide, resulted in capsule synthesis with very high conversion (>85%) after 6 h. Surface area and pore analysis of the capsules established that while the capsules possessed a hollow interior, the shell was essentially non-porous. The potential of these materials towards novel nanocarbon-based materials was demonstrated via the preservation of colloidal stability and particle morphology after chemical reduction of GO, in addition to successful encapsulation of hydrophobic nanoparticles within the capsule core.

History

Publication title

Polymer

Volume

63

Pagination

1-9

ISSN

0032-3861

Department/School

School of Natural Sciences

Publisher

Elsevier Sci Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Oxon, Ox5 1Gb

Rights statement

Copyright 2015 Elsevier Ltd All rights reserved

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC