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Abstract  22 

Sudden losses to food production -shocks- and their consequences across land and sea pose 23 

cumulative threats to global sustainability.  We conduct an integrated assessment of global 24 

production data from crop, livestock, aquaculture, and fisheries sectors over 53 years to 25 

understand how shocks occurring in one food sector can create diverse and linked challenges 26 

among others. We show that some regions are shock hotspots, exposed frequently to shocks 27 

across multiple sectors. Critically, shock frequency has increased through time on land and 28 

sea at a global scale. Geopolitical and extreme-weather events were the main shock drivers 29 

identified, although with considerable differences across sectors. We illustrate how social-30 

ecological drivers, influenced by dynamics of the food system, can spillover multiple food 31 

sectors and create synchronous challenges or trade-offs among terrestrial and aquatic systems. 32 

In a more shock-prone and interconnected world, bold food policy and social protection 33 

mechanisms that help people anticipate, cope and recover from losses will be central to 34 

sustainability.    35 

Main 36 

Food production shocks pose significant challenges for the UN Sustainable Development 37 

Goals (SDGs)1 because of their potential to disrupt food supply and security, livelihoods, and 38 

human well-being2–7. A wide range of social-ecological pressures on food systems can drive 39 

shocks through direct or indirect mechanisms. For example, droughts or floods can rapidly 40 

increase mortality of crops, livestock, or farmed fish; whereas sudden outbreaks of violent 41 

conflict may prevent farmers or fishers accessing their production systems7,8. Prolonged 42 

overfishing can also produce unexpected, sudden losses in catch as exploited fish populations 43 

are pushed toward ecological tipping points, after which stock collapse occurs9. People’s 44 

vulnerability to shock events rests on their capacity to adapt, the scale and frequency of 45 
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shocks, and their dependence on the affected sector10. Given millions of people worldwide 46 

simultaneously depend on agricultural and seafood sectors for food and livelihoods11,12, 47 

understanding national vulnerabilities to shocks requires a complete picture of exposure 48 

across sectors on land and sea. Yet studies on food production shocks to date largely deal 49 

with agricultural and seafood commodities in isolation2,7,13. Integrated understanding is 50 

required to assess cumulative risks to sustainability across all food sectors in the face of 51 

environmental change and human population growth. 52 

We investigate historical global trends in exposure to and drivers of food production shocks 53 

across crop, livestock, fisheries, and aquaculture sectors from 1961 – 2013. We use an 54 

established, standardised approach to identify shocks and their drivers in national production 55 

data taken from the UN Food and Agricultural Organization (FAO) and other published 56 

sources. Using local regression models, we identify shocks through breaks in the 57 

autocorrelation structure of a time-series, and couple detection with a literature review of in-58 

country events at the shock point. We map global shock frequency and co-occurrence and 59 

highlight the different ways shocks can permeate multiple food production sectors or drive 60 

trade-offs across them.  61 

Global trends in food production shocks 62 

From 741 available food production time-series (crops = 187, livestock = 190, fisheries = 202, 63 

aquaculture = 162), we detected 226 shocks across 134 nations. When pooled, we found 64 

agricultural sectors (crop and livestock) slightly more shock prone than aquatic sectors 65 

(fisheries and aquaculture) over the 53-year period (0.31 vs 0.29 shocks country-1 66 

respectively). Shock frequencies were regionally distinct within sectors, with some areas 67 

experiencing shocks far more frequently than others (Figure 1). Shock frequencies were 68 

highest in South Asia for crops (Figure 1a), the Caribbean for livestock (Figure 1b), Eastern 69 
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Europe for fisheries (Figure 1c), and South America for aquaculture sectors (Figure 1d). 70 

Importantly, some regions experienced high frequency in more than one sector. For example, 71 

South Asia experienced one of the highest shock frequencies to livestock as well as to crops, 72 

and the Caribbean experienced high frequency of fisheries shocks alongside livestock 73 

systems. Therefore, while there is varying exposure to production shocks within sectors, in 74 

several regions patterns of high shock frequency overlap and create areas of high cumulative 75 

exposure to production shocks across multiple fronts.  76 

The frequency of shocks has increased across all sectors at a global scale. In our results, 77 

annual shock frequencies fluctuated considerably over time, yet decadal averages, minima 78 

and maxima increased steadily from the 1960s and 70s (Figure 1e-h). We did not detect any 79 

shocks to aquaculture production until the early 1980s likely due to its nascence, but decadal 80 

shock rates have risen faster and to a level higher than in any other sector since (Figure 1h). 81 

Increasing shock frequency is a food security concern in itself. Conflict-related shocks across 82 

Sub-Saharan Africa and the Middle East since 2010 are responsible, combined with adverse 83 

climate conditions, for the first uptick in global hunger in recent times4. While the human 84 

impact of shocks depends on the degree to which livelihoods in a region or country depend 85 

on food production and the variation in vulnerability among households4, increased frequency 86 

reduces time for recovery between events. Smaller windows for recovery hinder coping 87 

strategies such as the accumulation of assets that can be sold during times of hardship, and 88 

can ultimately negatively influence the resilience of producers and communities to shocks4.  89 

Drivers of production shocks across land and sea 90 

Extreme weather events and geopolitical crises were the dominant drivers of shocks in our 91 

analysis, but the relative importance of drivers varied across sectors (Figure 2). Over half of 92 

all shocks to crop production systems were a result of extreme weather events (Figure 2), 93 
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largely drought, reinforcing the concern about vulnerability of arable systems to climatic and 94 

meteorological volatility across the globe14. We also found extreme weather to be a major 95 

driver of shocks to livestock (23%), particularly where reductions to feed occurred. For 96 

instance, severe summertime droughts in Mongolia in 2001 and 2010 reduced fodder and 97 

feed availability, compromised livestock condition, and led to mass mortality events during 98 

cold winter extremes15. Diseases such as foot and mouth also contributed to 10% of livestock 99 

shocks. Geopolitical crises, however, such as economic decentralisation in Europe or conflict 100 

in Sub-Saharan Africa, accounted for the greatest proportion (41%) of the livestock shocks in 101 

our analysis (Figure 2). 102 

In contrast, drivers of seafood production shocks were more diverse than for terrestrial 103 

systems (Figure 2). For fisheries, overfishing was responsible, at least in part, for 45% of 104 

shocks detected in landings data. However, geopolitical crises contributed to 23% of fisheries 105 

shocks, climate/weather events to 13% and policy changes to 11%. Shocks driven by policy 106 

changes can reflect positive interventions, but may also be a response to declining resources. 107 

In the aquaculture sector, while disease (included in ‘Other’ category) was the most common 108 

individual driver, responsible for 16% of shocks overall, a spectrum of geopolitical stressors 109 

were behind a third of aquaculture shocks, from state dissolution, to violent conflict, and 110 

declining competitiveness in export markets.  111 

Patterns of driver influence differed across regions (Supplementary Figure 1). For example, 112 

in South Asia, where agricultural shocks were most frequent, nearly all crop and livestock 113 

losses were driven by flood or drought. Whereas in Sub-Saharan Africa, where the greatest 114 

burden of hunger still persists4, geopolitical or economic crises were the leading drivers of 115 

agricultural shocks (Supplementary Figure 1). In seafood sectors, regional diversity of driver 116 

types was more consistent.  In wild systems, overfishing and geopolitical drivers contributed 117 

to numerous shocks across Europe, Sub-Saharan Africa and East Asia. For aquaculture, 118 
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disease was the primary driver in Europe and Latin America, but geopolitical conditions were 119 

more significant for both East Asia or the Middle East and North Africa (Supplementary 120 

Figure 1). Therefore, while we highlight dominant shock drivers for each sector at a global 121 

scale, we reiterate that challenges for increasing food production will vary greatly from place 122 

to place. 123 

The reason for the increase in shock frequency through time across sectors is not clear, in part 124 

because many potential factors (including quality of reporting) have changed and increased 125 

over the time period. However, crop production shocks driven by extreme weather became 126 

more frequent in our results over time (Supplementary Figure 2). In livestock, fisheries and 127 

aquaculture sectors particularly, the diversity of drivers increased from the 1970s 128 

(Supplementary Figure 2). As food systems become increasingly globalised and 129 

interdependent, a greater diversity of exogenous shocks may influence them over time16. For 130 

instance, livestock disease is increasing globally, driven largely by a rapid rise in demand for 131 

meat, the incursion of livestock in natural systems, intense farming practices and the mass 132 

movement of animals and people17. The nature of interdependencies among sectors are also 133 

changing18. Demands for feed now tightly couple aquaculture to both capture fisheries and 134 

crop systems19, and the production challenges each of these encounter. Furthermore, financial 135 

institutions motivated by socioeconomic drivers disconnected from their geographies of 136 

influence, increasingly sway producer investments and decisions with complex or unknown 137 

consequences for production stability or sustainability20.  138 

Co-occurrence and spillover across terrestrial and aquatic sectors 139 

Climate events, violent conflict or other social-ecological stressors can create complex 140 

synchronous, or lagged effects across different systems4. Therefore, a single stressor could 141 

elicit numerous shocks across different food sectors but not always at the same time. So, 142 
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while we would not necessarily expect shocks from the same stressor to coincide at the exact 143 

shock point (year), we would assume to see clumping of shocks within broader time-periods. 144 

Co-occurrence appeared in our data from the early 1990s and more frequently in the latter 145 

half our time-series (Figure 3a). Of the 134 nations affected by shocks in our analysis, 22 of 146 

these experienced shocks in multiple sectors during the same five-year period (Figure 3b). 147 

We recognise these trends are influenced by the length of time intervals used in Figure 3 and 148 

further do not reflect changes in other sectors not detected as a shock (although they may be a 149 

response or a driver of shocks detected here). Overlapping shock occurrence in this way 150 

allows us to identify and further examine the more detailed conditions underpinning 151 

occurrence of multi-sectoral shocks. 152 

Shocks spanning multiple sectors were often driven by geopolitical events. For example, loss 153 

of Soviet-linked subsidies, and reduced export markets in Albania during the fall of 154 

communism resulted in large declines in crop, fisheries, and aquaculture production21–23. 155 

North Korea experienced lagged impacts from economic fall-out from USSR dissolution by 156 

the mid-1990s, and extreme flooding exacerbated the scale of production losses on land. The 157 

resulting famine led to the deaths over 200,000 people24,25. In Mali, internal conflict from 158 

2011 onwards displaced farmers and fishermen alike by limiting access to rivers and farms 159 

directly, or through disruption to supply chains26. Nonetheless, the geography of the shock, 160 

the magnitude of the driver, the importance of the affected systems for national production, 161 

and the adaptive (e.g. coping strategies), absorptive (e.g. reserves, assets, capital), or 162 

transformative capacities (e.g. governance mechanisms)4  of affected communities will all 163 

influence how a shock manifests across different food systems. Taking further examples from 164 

Figure 3, we illustrate how the social-ecological dynamics of both the country and the shock 165 

can yield variable responses across sectors (Figure 4).  166 
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Drivers of shocks can create similar or opposing responses in production across multiple 167 

sectors, revealing links between terrestrial and aquatic systems. In both Kuwait (Figure 4a) 168 

and Afghanistan (Figure 4b), different shock drivers at different scales created similar 169 

national-level responses spanning terrestrial and aquatic production.  The invasion of Kuwait 170 

by Iraq in late 1990 and the subsequent conflict with the US and allies was a huge nationwide 171 

disturbance, caused widespread devastation to agricultural land and the removal of the 172 

majority of Kuwaiti fishing vessels ceased commercial fishing27. Rapid declines in crop, 173 

livestock and fisheries production occurred from 1990, with shocks detected in both livestock 174 

and fisheries time-series (Figure 4a). In Afghanistan, a severe drought from 2000 – 2002 175 

decimated cereal production particularly in the country’s north. Large increases in animal 176 

diseases and reduced fodder severely affected production for pastoralists28 and we detected a 177 

shock to fisheries landings at the same point (Figure 4b). The similar declines across sectors 178 

disguise the differences in vulnerability however. Disturbances at the scale of the Gulf War 179 

are rare events, whereas droughts are frequent across Western Asia. In Afghanistan, its 180 

landlockedness and the absence of marine fisheries leaves national food production more 181 

vulnerable to drought.  182 

In contrast, divergent responses to extreme weather in Dominica illustrate the potential for 183 

land-sea trade-offs when human adaptation measures shift resource use across sectors. 184 

Repeated damage to farmland from tropical storms during the 1970s pushed more of the 185 

nation’s farmers into fishing for a primary income source29. After Hurricane David decimated 186 

the banana crop in 1979, fisheries landings increased dramatically from 1980, followed by a 187 

rapid decline in 1983 (Figure 4c), likely driven by overfishing leading to stock collapse in 188 

nearshore waters29. Shifts between land and sea following a shock were rare in our analysis of 189 

national time series. It is possible Dominica’s small size, and high dependence on a single 190 

crop for livelihoods of the rural poor (who have few absorptive strategies for coping with 191 
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crises)30, contributed to this response. However, it is likely these switches occur much more 192 

widely at smaller scales given the prevalence of joint dependence on fisheries and agriculture 193 

worldwide11 and because small-scale fisheries are often used to buffer the effects of extreme 194 

events31.  195 

In Ecuador, shocks occurred at similar points in both crop and aquaculture systems with 196 

seemingly unrelated proximate drivers if investigated solely from single sector perspectives 197 

(Figure 4d). The strong El-Niño Southern Oscillation (ENSO) event of 1998 led to 198 

widespread flood damage to croplands across Ecuador32 detected as a shock in our time-199 

series, and at the same time, a large reduction in coastal fisheries landings occurred (Figure 200 

4d), although not detected as shock due to the variable nature of the Humboldt system2. 201 

While there were reports of flood damages to shrimp farms in 1998, two years later we 202 

detected a shock to aquaculture production because of dramatic declines in the shrimp 203 

industry. These declines are consistent with the reports of a white-spot syndrome outbreak, 204 

which severely affected the industry in 200033. We could find no documented link of the El-205 

Niño event and the disease outbreak; however, abnormally warm coastal waters on the 206 

Pacific South American coast are associated with both El-Niño events and the rapid spread of 207 

the White-spot Syndrome virus34. Irrespective of whether these shocks are connected or not, 208 

an increased co-occurrence because of linked or independent drivers becomes problematic for 209 

communities with a reduced capacity to deal with these dual impacts.  210 

Challenges and potential for sustainable development in a shock-prone world 211 

Shocks across multiple sectors pose significant threats to improving global food security as 212 

well as other sustainability targets. For example, one target within SDG 2 of zero hunger, is 213 

to strengthen adaptive capacity in the face of climate change and extreme events1. For many 214 

people, livelihood diversification between agriculture and fisheries is a key strategy in 215 
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alleviating the impacts of production shortfalls11,35,36 yet shocks across multiple sectors 216 

compromise these options. A lack of viable alternatives can drive people to derive food or 217 

income from other sources with unpredictable sustainability consequences. The declines in 218 

large mammal populations in West Africa during times of low fish supply or after the 219 

collapse of agricultural systems in the Soviet Union are clear examples37,38. Trade-offs across 220 

sectors like this including the example from Dominica (Figure 4c) present significant 221 

challenges for achieving other sustainability targets. Unpredictable shifts among sectors 222 

create interactions among the goals for life on land, life below water or responsible 223 

production and consumption1 for instance. Further, as shock rates increase across all sectors 224 

the capacity for shocks to co-occur increases simultaneously. 225 

On a global scale, increased shock frequency may pose a threat to the resilience of the global 226 

food system through impacts on trade. Nearly a quarter of food, agricultural land, and 227 

freshwater resources are accessed through trade6 and a number of countries are dependent on 228 

imports to meet the food demands of their population39. Trade dependency is also becoming 229 

more regionally specialised, with some major breadbaskets the sole suppliers of commodities 230 

to other nations. For example, Thailand currently provides over 96% of rice imports to a 231 

number of West African countries40. The high dependence on just a handful of producers for 232 

some countries highlights future vulnerability. Producing countries often reduce or ban 233 

exports during production crises to protect domestic supply, endangering import-dependent 234 

trade partners5,6,39,40. If shock frequencies continue to increase and major producing nations 235 

are affected, a shift to a state of reduced exports is plausible at a global level. Increased 236 

commodity prices linked to global scarcity would favor higher paying nations40, leaving low-237 

income, trade-dependent countries in jeopardy. In the case that a higher frequency of shocks 238 

is influencing the stability of trade, we might expect to see increased temporal variability in 239 
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either trade or price data. Whether or not these signals are present in the available data 240 

warrants further investigation.  241 

Country-level differences in vulnerability to external or domestic production shocks mean 242 

challenges posed by them are uneven across regions and commodities. For example, frequent 243 

shocks in small Caribbean livestock sectors will have variable consequences across the 244 

different regional economies, yet a shock in major producers such as Argentina may 245 

influence supply for multiple trade-partners around the world41. Comparing across 246 

commodities, frequent or severe crop shocks in major breadbaskets such as South Asia can 247 

have far reaching consequences for global food availability and access5 but relatively small 248 

shocks to fish landings in small-island developing states may have equally negative effects on 249 

nutrition12,42. The diverse sources of threat across land and sea from domestic or foreign 250 

sources highlights a pressing need to improve resilience to shocks in both agricultural and 251 

seafood sectors.   252 

Building resilience at a global level will require more proactive national food and trade 253 

policies. Investing in climate-smart food systems that exploit ecosystem services to mitigate 254 

extreme-events will be increasingly important43. For instance, increasing diversity of plant 255 

and animal breeds/varieties can minimise vulnerability to disease; integrating agroforestry 256 

into farm systems and enhancing soil quality can improve recovery times after drought and 257 

floods3,43. Concerted efforts should be made in import-dependent countries to build domestic 258 

food reserves to buffer the effects of supply losses when trade partners reduce exports during 259 

production shocks6. Moreover, international trade policies should aim to disincentivise 260 

behaviours that exacerbate the impacts of production shocks such as commodity hoarding and 261 

export bans. Such policy is especially important for major food producers such as the USA, 262 

India, or China, whose trade networks have greater global influence on food supply6. 263 

Maintaining fair and open trade should be made a priority in addressing global hunger. 264 
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In shock-prone areas, a number of social protection mechanisms will be key. These 265 

mechanisms may help nations, communities and households prevent and anticipate shocks, 266 

cope with them and recover4. For example, conflict-related shocks remain the biggest barrier 267 

to food security in the world’s most food insecure regions4,7. Greater understanding of the 268 

causes of conflict in different areas is central to prevention4. New early-warning systems for 269 

violence are already underway44. During times of crisis, timely food and cash transfers, and 270 

food or cash for work programmes show promise throughout Sub-Saharan Africa45.  For 271 

those displaced, to speed up recovery and close yield gaps, participatory planning and post-272 

conflict support such as tools, seeds or skills training is crucial 4,46. Weather-indexed 273 

insurance is another innovative tool to protect producers against loss of income or food 274 

access during adverse conditions47, and will be particularly important if extreme events 275 

become more frequent48.   276 

Increased investment in food systems research to improve resilience to shocks is urgently 277 

required under climate change. Continued development of drought and pest-related resistance 278 

in key crops is crucial49 but understanding and addressing barriers to uptake in food-insecure 279 

countries is equally important50. The same applies where fish-farming could increase 280 

resilience to external shocks in vulnerable nations42 but barriers that limit industry growth 281 

must be overcome. In commercial-scale aquaculture systems, improvements in open data and 282 

new sequencing technologies can help us understand the microbial conditions surrounding 283 

disease emergence, which is fundamental to meeting increasing global seafood demands51. 284 

Without learning to mitigate and adapt to the effects of increased volatility in food systems, 285 

global goals to end hunger and protect our natural ecosystems may be out of reach.  286 

Trends discussed here almost certainly underrepresent the frequency of production shocks. 287 

Aggregation of production data to country level smooths out sudden production losses that 288 

are locally isolated or restricted to a single food type. This is particularly true in large 289 
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countries such as the United States of America or Australia where food is grown over large 290 

and diverse landscapes. Small-scale, unreported food systems (e.g. some inland and marine 291 

fisheries or aquaculture, backyard farm systems and wild meat sources) are also not included 292 

in the data used in this analysis. Although this is a recognised weakness, the data used here 293 

represents the best source of production data with global coverage across multiple sectors. 294 

Nevertheless, localised shocks or shocks to small-scale systems are still of concern for the 295 

livelihoods and food security of communities dependent on them.  296 

Achieving the SDGs by 2030 will require addressing drivers of food production shocks and 297 

derived threats. With shock frequency increasing across sectors, the likelihood of shock co-298 

occurrence increases, particularly in hotspots of shock exposure. Production challenges will 299 

be hardest felt by those with lower capacity to adapt to or absorb shocks. With extreme 300 

weather events predicted to increase into the future, potentially interacting with civil unrest, 301 

achieving food security in regions most exposed to shocks may hinge on successful social 302 

protection mechanisms to help people cope and recover. Fundamental shifts toward shock-303 

resilient food systems will require considerable but achievable change to how we grow and 304 

trade food. Integrating and understanding links between land and sea will be critical for 305 

programmes and research aiming to affect progress towards food security and sustainable 306 

development. 307 

Methods 308 

To identify and compare shock occurrence among fundamentally different systems 309 

(agriculture and seafood), we adopt the paired statistical and qualitative approach of Gephart 310 

et al2. This method identifies shocks through breaks in the autocorrelation structure of a time-311 

series and combines this with a literature search for likely driver of the shock.  Alternative 312 

studies have used pre-published data sets on extreme events to understand responses in 313 



14 
 

production data31, however this skews focus toward drivers with plentiful data – often 314 

terrestrial and biophysical events such as floods, droughts, or cold fronts. Others have also 315 

used the trade in virtual water to study shocks in agricultural systems13, but this largely 316 

eliminates the marine component of our food system. Reliance on statistical detection in 317 

production data avoids specificity making it a standardised approach applicable across crop, 318 

livestock, fisheries, and aquaculture sectors. 319 

Data Sources 320 

We use a range of food production data from the UN’s Food and Agricultural Organization 321 

(FAO) combined with published production datasets for our analysis. We used crop and 322 

livestock data from FAOSTAT production quantity dataset 1961 – 2014 dataset 323 

(http://www.fao.org/faostat/en/)52. Crop types included cereals, coarse grains, fruits, roots and 324 

tubers, pulses, tree nuts and vegetables; while livestock included total meat, milk, and egg 325 

production from bovine, poultry, swine, mutton and goat sources. We used the FAO FishStat 326 

database53 for inland and marine aquaculture production, and inland fisheries landings data 327 

(1950 – 2015 Global Production dataset, www.fao.org/fishery/topic/166235/en.). We used 328 

marine fish landings data from Watson54 to account for estimates of large-scale, small-scale 329 

and illegal, unregulated, and unreported (IUU) landings. Fisheries data included all landed 330 

finfish, crustaceans, and molluscs. Aquaculture data included all farmed finfish, crustaceans, 331 

molluscs and algae. While we recognise that underreporting of small-scale production across 332 

all sectors is a limitation of FAO data, it provides global coverage of production across 333 

multiple sectors, and the detection of shocks relies on overall trends in data rather than 334 

absolute production values. We obtained country shapefiles used for mapping global patterns 335 

from Natural Earth (https://www.naturalearthdata.com/) and adapted EEZ shapefiles from 336 

Marine Regions (http://www.marineregions.org/)55. We performed all data analyses using R 337 

statistical software56. 338 

http://www.fao.org/faostat/en/
http://www.fao.org/fishery/topic/166235/en
https://www.naturalearthdata.com/
http://www.marineregions.org/
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Detecting shocks and identifying drivers 339 

For all countries we aggregated production to total annual values from 1961 – 2013 across all 340 

commodity types described above for crop, livestock, fisheries and aquaculture sectors. We 341 

fitted local polynomial regression (LOESS) models with a span of 0.6 to aggregated annual 342 

production data for all countries and sectors. We regressed model residuals against lag-1 343 

residuals, and any outliers in this regression (quantified as data points with a Cook’s 344 

distance > 0.3), we deemed shocks (Supplementary Figure 4). Given only production losses 345 

are of concern for food security, we only considered shock points associated with a loss in 346 

production relative to a previous 7-year median production baseline.  347 

Consistent with the approach by Gephart et al.2, for each shock detected we calculated the 348 

size of a shock and its recovery time for comparisons across sectors and regions 349 

(Supplementary Figure 1). Shock size equals the loss in production (in tonnes) relative to the 350 

previous 7-year median baseline. Recovery time for the shock is calculated as the number of 351 

years taken to increase back up to at least 95% of this baseline. Some shocks did not recover 352 

by the end of the time series and we highlight the individual shocks in Supplementary Table 1. 353 

We calculated shock frequencies for each geographical region, by dividing the number of 354 

shocks detected from 1961 – 2013 by the number of time-series used for detection. For 355 

annual shock frequencies, for every sector we divided the number of shocks detected for a 356 

given year by the number of countries producing in that year. This approach compensates for 357 

different numbers of countries within each region, and the increasing number of countries 358 

producing through time. 359 

Adopting a qualitative approach to identifying the drivers of production shocks helps account 360 

for and recognise the multiple and complex social-ecological factors contributing to an event. 361 

For a detected shock, we searched peer-reviewed and grey literature (e.g. NGO reports, news 362 
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articles etc.) for the likely causes, or drivers, of each individual shock. Each shock was 363 

assessed independently disaggregating production data into individual commodities to 364 

identify the species affected and check our analysis, which allowed greater specificity to our 365 

search. We only attributed a driver to a shock when our search returned a documented event 366 

or set of conditions where a negative effect on agricultural or seafood sectors (dependent on 367 

the sector affected) was explicitly mentioned at or just before the shock point (i.e. 368 

documentation stipulated the link rather than us establishing purely correlative trends). The 369 

combination of quantitative and qualitative methods adopted by Gephart et al.2 provide 370 

complimentary approaches where purely data driven methods may highlight correlative 371 

relationships with drivers without causation. Likewise, purely qualitative analyses may be 372 

limited in their capacity to detect shocks because of differences in reporting across regions. 373 

We caution that this approach is not meant to provide a comprehensive list of contributing 374 

factors for a given shock within the data, but instead highlights potential drivers of change 375 

from the literature we identify. It is plausible that other unidentified factors contribute to the 376 

changes seen in the data. 377 

In our analysis, we classify drivers of shocks into five main categories. Climate/weather 378 

events include anomalies such as storms, droughts, ENSO events, or climate-driven 379 

ecosystem change. Geopolitical/economic events covers disturbances from conflict, state 380 

dissolution or financial crises. Mismanagement includes multiple categories such as 381 

overfishing in the ocean, or deforestation and erosion of soils on land. Policy change can 382 

refer to, for example, closure of a fishery or abolition of agricultural subsidies. The ‘Other’ 383 

category includes a wide range of pressures from production diseases to geological events 384 

such as tsunamis or volcanic eruptions. Due to the complex nature of social-ecological 385 

stressors on food systems, we combined many of these categories to explain the drivers of 386 

production shocks and highlight these sub-categories. The Unknown category contains 387 
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shocks for which we could not find a documented reason. It is possible that our statistical 388 

approach to detection means we identify changes to national reporting methods as a shock. 389 

This highlights the importance of the complimentary quantitative and qualitative approaches 390 

used here to identify if a statistical anomaly in production data is reflected by conditions or 391 

events reported in reality2. 392 

We do however acknowledge that some production losses detected may not be completely 393 

unanticipated. Some production losses driven by economic recession or policy changes may 394 

be expected by producers. However, to what extent the production losses detected here were 395 

anticipated is unclear because of data scarcity. Policy responses to dwindling resources can 396 

certainly produce shocks to food supply and livelihoods, as exemplified in the closure and 397 

subsequent anger surrounding the North-West Atlantic cod fishery in 199357. But even if an 398 

event is anticipated, the scale of disruption may be unknown (the uncertainty surrounding the 399 

economic impacts of the United Kingdom leaving the European Union is a contemporary 400 

example).  While the uncertainty surrounding whether a statistical shock in production data 401 

equates to a shock in reality is a limitation, this method does allow non-biased detection of 402 

shocks caused by drivers for which there is scant data (e.g. sudden declines from fish stock 403 

collapse). Although sensitivity analyses of Cook’s distance, LOESS span or production 404 

baseline parameters provided confidence intervals, we may not have detected all shocks 405 

(Supplementary Figure 3). Further, the shock detection method described here is less 406 

sensitive to production changes in highly variable systems where large fluctuations are 407 

common within the time series2.   408 

Data availability 409 

Crop and livestock production data were accessed through FAOSTAT 410 

http://www.fao.org/faostat/en/. For marine fisheries production we used the published dataset 411 

http://www.fao.org/faostat/en/
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by Watson54 at https://www.nature.com/articles/sdata201739.  Aquaculture and inland 412 

fisheries data were extracted from global production datasets using FishStat software 413 

(www.fao.org/fishery/topic/166235/en). All code and data products used for analyses in this 414 

study are publicly available through a Github repository (https://github.com/cottrellr/shocks). 415 

All data that support this study are available from the corresponding author on request 416 
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Figure 1 – Spatial (a-d) and temporal (e-g) trends in food production shock frequency in 

crop, livestock, fisheries, and aquaculture sectors from 1961-2013. Regions include North 

America, Central America, Caribbean, South America, Northern Europe, Western Europe, 

Southern Europe, Eastern Europe, North Africa, West Africa, Central Africa, Southern Africa, 

East Africa, Western Asia, South Asia, East Asia, South-east Asia, Melanesian, Micronesia, 

Australia and New Zealand, and Polynesia. The red line in the time series indicates the 

annual shock frequency from the shocks identified in this study. Light grey confidence 

interval describes the plausible range of frequencies under different combinations of LOESS 

model span (0.2-0.8), production baseline durations (3,5,7, or 9 years) and average types used 

for baseline (mean or median). Dashed black line is the decadal mean of the red line and the 

dark grey band is the decadal minima and maxima of the confidence interval.     

Figure 2 – Drivers of food production shocks for crop, livestock, fisheries and 

aquaculture sectors.  

Figure 3 – Heat map of shock co-occurrence across terrestrial and aquatic food sectors 

through time. a) Global extent of co-occurrence in all countries affected by shocks in our 

analysis grouped by subregion b) Isolated countries where shocks occurred across multiple 

sectors during the same five-year period.   

Figure 4 – Case studies of shock spillover, trade-offs, and co-occurrence across 

terrestrial and aquatic sectors. a) Invasion of Kuwait during the Gulf War b) Severe 

drought in Afghanistan c) Land-sea switches following Hurricane David in Dominica d) El-

nino driven floods on land followed by an outbreak of white-spot disease in shrimp farms, 

Ecuador. 
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