University of Tasmania
Browse

Forest fire may disrupt plant-microbial feedbacks

Download (290.94 kB)
journal contribution
posted on 2023-05-19, 20:42 authored by Senior, J, Julianne O'Reilly-WapstraJulianne O'Reilly-Wapstra, Schweitzer, JA, Bailey, JK, Bradley PottsBradley Potts
Plant–microbial feedbacks are important drivers of plant community structure and dynamics. These feedbacks are driven by the variable modification of soil microbial communities by different plant species. However, other factors besides plant species can influence soil communities and potentially interact with plant–microbial feedbacks. We tested for plant–microbial feedbacks in two Eucalyptus species, E. globulus and E. obliqua, and the influence of forest fire on these feedbacks. We collected soils from beneath mature trees of both species within native forest stands on the Forestier Peninsula, Tasmania, Australia, that had or had not been burnt by a recent forest fire. These soils were subsequently used to inoculate seedlings of both species in a glasshouse experiment. We hypothesized that (i) eucalypt seedlings would respond differently to inoculation with conspecific versus heterospecific soils (i.e., exhibit plant–microbial feedbacks) and (ii) these feedbacks would be removed by forest fire. For each species, linear mixed effects models tested for differences in seedling survival and biomass in response to inoculation with conspecific versus heterospecific soils that had been collected from either unburnt or burnt stands. Eucalyptus globulus displayed a response consistent with a positive plant–microbial feedback, where seedlings performed better when inoculated with conspecific versus heterospecific soils. However, this effect was only present when seedlings were inoculated with unburnt soils, suggesting that fire removed the positive effect of E. globulus inoculum. These findings show that external environmental factors can interact with plant–microbial feedbacks, with possible implications for plant community structure and dynamics.

History

Publication title

Plant Ecology

Volume

219

Issue

5

Pagination

497-504

ISSN

1385-0237

Department/School

School of Natural Sciences

Publisher

Kluwer Academic Publ

Place of publication

Van Godewijckstraat 30, Dordrecht, Netherlands, 3311 Gz

Rights statement

© 2018 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Native forests

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC