University of Tasmania
Browse

GPS-observed elastic deformation due to surface mass balance variability in the Southern Antarctic Peninsula

Download (1.77 MB)
journal contribution
posted on 2023-05-21, 05:49 authored by Koulali, A, Whitehouse, PL, Clarke, PJ, van den Broeke, MR, Nield, GA, Matt KingMatt King, Bentley, MJ, Wouters, B, Wilson, T
In Antarctica, GPS vertical time series exhibit non-linear signals over a wide range of temporal scales. To explain these non-linearities, a number of hypotheses have been proposed, among them the short-term rapid solid Earth response to contemporaneous ice mass change. Here we use GPS vertical time series to reveal the solid Earth response to variations in surface mass balance (SMB) in the Southern Antarctic Peninsula (SAP). At four locations in the SAP we show that interannual variations of SMB anomalies cause measurable elastic deformation. We use regional climate model SMB products to calculate the induced displacement assuming a perfectly elastic Earth. Our results show a reduction of the misfit when fitting a linear trend to GPS time series corrected for the elastic response to SMB variations. Our results imply that, for a better understanding of the glacial isostatic adjustment (GIA) signal in Antarctica, SMB variability must be considered.

Funding

Australian Research Council

Australian National University

Curtin University

University of Canberra

University of Melbourne

University of New South Wales

University of South Australia

University of Western Australia

History

Publication title

Geophysical Research Letters

Article number

e2021GL097109

Number

e2021GL097109

ISSN

0094-8276

Department/School

School of Geography, Planning and Spatial Sciences

Publisher

Amer Geophysical Union

Place of publication

2000 Florida Ave Nw, Washington, USA, Dc, 20009

Rights statement

© 2022. The Authors.This is an open access article under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, (https://creativecommons.org/licenses/by/4.0/) which permits use, distribution and reproduction in any medium, provided the original work is properly cited

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC