University of Tasmania
Browse

File(s) under permanent embargo

Gas-phase studies of copper(I)-mediated CO2 extrusion followed by insertion of the heterocumulenes CS2 or phenylisocyanate

journal contribution
posted on 2023-05-20, 21:59 authored by Yang, Y, Allan CantyAllan Canty, O'Hair, RAJ
The gas‐phase extrusion–insertion reactions of the copper complex [bathophenanthroline (Bphen)CuI(O2CC6H5)]2-, generated via electrospray ionization, was studied in a linear ion trap mass spectrometer with the combination of collision‐induced dissociation (CID) and ion‐molecule reaction (IMR) events. Multistage mass spectrometry (MSn) experiments and density functional theory (DFT) demonstrated that extrusion of carbon dioxide from [(Bphen)Cu(O2CC6H5)]2- (CID) gives the organometallic intermediate [(Bphen)Cu(C6H5)]2-, which subsequently reacts with carbon disulfide (IMR) via insertion to yield [(Bphen)Cu (SC(S)C6H5)]2−. The fragmentation of the product ion resulted in the formation of [Bphen]2−, [(Bphen)Cu]- and C6H5CS2 under CID conditions. The formation of the latter two charge separation products thus provides evidence of C–C bond formation in the IMR step. Although analogous studies with isocyanate, which is isoelectronic with CS2, showed a poor reactivity in the gas phase, the mechanistic understanding obtained from these model studies encourages future development of a solution phase protocol for the synthesis of amides from carboxylic acids and isocyanates mediated by copper(I) complexes.

History

Publication title

Journal of Mass Spectrometry

Volume

56

Issue

4

Article number

e4579

Number

e4579

Pagination

1-8

ISSN

1076-5174

Department/School

School of Natural Sciences

Publisher

John Wiley & Sons Ltd

Place of publication

The Atrium, Southern Gate, Chichester, England, W Sussex, Po19 8Sq

Rights statement

Copyright 2020 John Wiley & Sons, Ltd.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the physical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC