University Of Tasmania

File(s) under permanent embargo

Generating training images with different angles by GAN for improving grocery product image recognition

journal contribution
posted on 2023-05-21, 09:07 authored by Yuchen WeiYuchen Wei, Shuxiang XuShuxiang Xu, Byeong KangByeong Kang, Sabera HoqueSabera Hoque
Image recognition based on deep learning methods has gained remarkable achievements by feeding with abundant training data. Unfortunately, collecting a tremendous amount of annotated images is time-consuming and expensive, especially in grocery product recognition tasks. It is challenging to recognise grocery products accurately when the deep learning model is trained with insufficient data. This paper proposes multi-angle Generative Adversarial Networks (MAGAN), which can generate realistic training images with different angles for data augmentation. Mutual information is employed in the novel GAN to achieve the learning of angles in an unsupervised manner. This paper aims to create training images containing grocery products from different angles, thus improving grocery product recognition accuracy. We first enlarge the fruit dataset by using MAGAN and the state-of-the-art GAN variants. Then, we compare the top-1 accuracy results from CNN classifiers trained with different data augmentation methods. Finally, our experiments demonstrate that the MAGAN exceeds the existing GANs for grocery product recognition tasks, obtaining a significant increase in the accuracy.


Publication title









School of Information and Communication Technology


Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

© 2021 Elsevier B.V. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Artificial intelligence