University of Tasmania
Browse

File(s) under permanent embargo

Genetic influences on serum bilirubin in American Indians: The Strong Heart Family Study

journal contribution
posted on 2023-05-20, 18:50 authored by Phillip MeltonPhillip Melton, Haack, K, Goring, HH, Laston, S, Umans, JG, Lee, ET, Fabsitz, RR, Devereux, RB, Best, LG, Maccluer, JW, Almasy, L, Cole, SA

Objective: To identify genetic variation influencing serum bilirubin levels in American Indians, we performed genome-wide screening and association analyses in the Strong Heart Family Study. Bilirubin is an endogenous antioxidant that has demonstrated an inverse relationship with cardiovascular disease. Genetic variation within the promoter region of uridine diphosphate glucuronosyltransferase (UGT1A1) on chromosome 2q has been associated with elevated serum bilirubin levels in European populations. However, no study has investigated the UGT1A1 promoter in American Indians.

Methods: Statistical analyses were carried out with 3,484 participants aged 14 to 93 years recruited from three geographic areas in the United States; Arizona, Oklahoma, and North and South Dakota.

Results: Variance components linkage analysis detected a quantitative trait locus (QTL) for bilirubin on chromosome 2q in the combined centers (LOD = 6.61, P = 4.24 × 10⁻⁶) and in Oklahoma (LOD = 5.65, P = 4.57 24 × 10⁻⁵). Genetic association of the UGT1A1 promoter polymorphism was significant for all geographic locations. After adjustment using conditional linkage for UGT1A1 promoter variance, the linkage signal dropped to 1.10 in the combined sample and to 3.32 (P = 0.02) in Oklahoma, indicating this polymorphism is not completely responsible for the linkage signal in American Indians. We also detected suggestive linkage signals in the Dakotas on chromosome 10p12 (LOD = 2.18) and in the combined centers (LOD = 2.24) on chromosome 10q21.

Conclusions: Replication of a serum bilirubin QTL on chromosome 2q in American Indians implicates UGT1A1 but further genotyping is warranted to identify additional causative polymorphisms. Evidence also supports a potential novel locus for bilirubin on chromosome 10.

History

Publication title

American Journal of Human Biology

Pagination

118-125

ISSN

1042-0533

Department/School

Menzies Institute for Medical Research

Publisher

Wiley-Liss

Place of publication

Div John Wiley & Sons Inc, 605 Third Ave, New York, USA, Ny, 10158-0012

Rights statement

Copyright 2010 Wiley-Liss, Inc

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC