University of Tasmania
Browse
- No file added yet -

Genetic variation in WNT9B increases relapse hazard in Multiple Sclerosis

Download (839.85 kB)
journal contribution
posted on 2023-05-21, 03:24 authored by Vandebergh, M, Andlauer, TFM, Yuan ZhouYuan Zhou, Mallants, K, Held, F, Aly, L, Bruce TaylorBruce Taylor, Hemmer, B, Dubois, B, Goris, A

Objective: Many multiple sclerosis (MS) genetic susceptibility variants have been identified, but understanding disease heterogeneity remains a key challenge. Relapses are a core feature of MS and a common primary outcome of clinical trials, with prevention of relapses benefiting patients immediately and potentially limiting long-term disability accrual. We aim to identify genetic variation associated with relapse hazard in MS by analyzing the largest study population to date.

Methods: We performed a genomewide association study (GWAS) in a discovery cohort and investigated the genomewide significant variants in a replication cohort. Combining both cohorts, we captured a total of 2,231 relapses occurring before the start of any immunomodulatory treatment in 991 patients. For assessing time to relapse, we applied a survival analysis utilizing Cox proportional hazards models. We also investigated the association between MS genetic risk scores and relapse hazard and performed a gene ontology pathway analysis.

Results: The low-frequency genetic variant rs11871306 within WNT9B reached genomewide significance in predicting relapse hazard and replicated (meta-analysis hazard ratio (HR) = 2.15, 95% confidence interval (CI) = 1.70-2.78, p = 2.07 × 10-10 ). A pathway analysis identified an association of the pathway "response to vitamin D" with relapse hazard (p = 4.33 × 10-6 ). The MS genetic risk scores, however, were not associated with relapse hazard.

Interpretation: Genetic factors underlying disease heterogeneity differ from variants associated with MS susceptibility. Our findings imply that genetic variation within the Wnt signaling and vitamin D pathways contributes to differences in relapse occurrence. The present study highlights these cross-talking pathways as potential modulators of MS disease activity.

History

Publication title

Annals of Neurology

Volume

89

Issue

5

Pagination

884-894

ISSN

0364-5134

Department/School

Menzies Institute for Medical Research

Publisher

Wiley-Liss

Place of publication

United States

Rights statement

© 2021 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License, (https://creativecommons.org/licenses/by-nc/4.0/) which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Repository Status

  • Open

Socio-economic Objectives

Diagnosis of human diseases and conditions

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC