Although transmissible cancers have, so far, only been documented in three independent animal groups, they not only impact animals that have high economic, environmental and social significance, but they are also one of the most virulent parasitic life forms. Currently known transmissible cancers traverse terrestrial and marine environments, and are predicted to be more widely distributed across animal groups; thus, the implementation of effective collaborative scientific networks is important for combating existing and emerging forms. Here, we quantify how collaborative effort on the three known transmissible cancers has advanced through the formation of collaborative networks among institutions and disciplines. These three cancers occur in bivalves (invertebrates-disseminated neoplasia; DN), Tasmanian devils (vertebrate-marsupial; devil facial tumour disease; DFTD) and dogs (vertebrate-eutherian mammal; canine transmissible venereal tumour; CTVT). Research on CTVT and DN has been conducted since 1876 and 1969, respectively, whereas systematic research on DFTD only started in 2006. Yet, collaborative effort on all three diseases is global, encompassing six major Scopus subject areas. Collaborations steadily increased between 1963 and 2006 for CTVT and DN, with similar acceleration for all three cancers since 2006. Network analyses demonstrated that scientists are organizing themselves into efficient collaborative networks; however, these networks appear to be far stronger for DFTD and DN, possibly due to the recent detection of new strains adding impetus to research and associated publications (enhancing citation trajectories). In particular, global and multidisciplinary collaborations formed almost immediately after DFTD research was initiated, leading to similar research effort and relatively greater research outputs compared to the other two diseases. Therefore, in the event of outbreaks of new lineages of existing transmissible cancers, or the discovery of new transmissible cancers in the future, the rapid formation of international collaborations spanning relevant disciplines is vital for the efficient management of these diseases.
History
Publication title
Evolutionary Applications
Volume
13
Issue
7
Pagination
1745-1755
ISSN
1752-4571
Department/School
School of Natural Sciences
Publisher
Wiley-Blackwell Publishing, Inc.
Place of publication
United States
Repository Status
Restricted
Socio-economic Objectives
Control of pests, diseases and exotic species in terrestrial environments