University of Tasmania
Browse
- No file added yet -

Grid impacts of uncoordinated fast charging of electric ferry

Download (12.11 MB)
journal contribution
posted on 2023-05-21, 11:23 authored by Roy, RB, Alahakoon, S, Shantha Jayasinghe Arachchillage
The battery energy storage system (BESS) is an indispensable part of an electric fleet (EF) which needs to be charged by electricity from local grid when the fleet is in the dockyard. The uncoordinated fast charging of BESS in Grid to Ferry (G2F) mode imposes sudden increments of load in the power grid, which is analyzed by a simulated model of grid connected marine load. The probable impact on system stability is examined by MATLAB Simulink and Power World Simulator based models. According to simulation results for IEEE 5 bus system, voltage unbalance factors are 0.01% and 200% for all buses at fundamental and third harmonics frequencies, respectively. The total harmonic distortion (THD) at fundamental frequency becomes 0.16%, 0.16%, and 0.18%, respectively, for three cases. The transient, voltage reactive power (V-Q), and voltage real power (V-P) sensitivity analysis are performed for 7 bus system with load increment contingencies. According to simulation results, the V-Q sensitivity for the assigned contingency is increased by the addition of a shunt generator to the load bus with lowest bus voltage. In case of V-P sensitivity for the selected contingency, the load buses share power among them, and the nose point is attained at maximum shift of power with high V-Q sensitivity.

History

Publication title

Batteries

Volume

7

Pagination

1-18

ISSN

2313-0105

Department/School

Australian Maritime College

Publisher

MDPI AG

Place of publication

Switzerland

Rights statement

Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/)

Repository Status

  • Open

Socio-economic Objectives

Electronic information storage and retrieval services; Expanding knowledge in engineering

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC