University of Tasmania
Browse

File(s) under permanent embargo

Habitat-former effects on prey behaviour increase predation and non-predation mortality

journal contribution
posted on 2023-05-18, 05:24 authored by Gribben, PE, Jeffrey WrightJeffrey Wright
  • Habitat-forming species can influence mortality on associated species via altering structural and non-structural abiotic conditions. Importantly, these effects can occur simultaneously and in opposite directions, although how they contribute to the net outcomes for predator–prey interactions remain unexplored.

  • Seagrasses often have positive effects on associated fauna because their structure directly reduces predator encounter rates. However, we identified a ‘risky’ behaviour (shallower burial) in an infaunal bivalve at a high seagrass cover – likely induced by non-structural abiotic change – suggesting positive effects may be outweighed by risky behaviours. We determined whether the physical structure of the seagrass interacted with burial behaviour of clams to determine the predation and non-predation mortality and whether these interactions were mediated by the cover of the seagrass.

  • Surveys on an intertidal sand flat in Tasmania, Australia showed that the highest densities of a dominant bivalve, Katelysia scalarina, occurred at low (33%) seagrass cover, but the lowest densities and the highest proportion of unburied clams occurred at high (100%) cover. A field experiment manipulating burial depth, seagrass cover and predator access demonstrated that unburied clams suffered very high predation and non-predation mortality compared to buried clams (~4x higher), which outweighed any positive effects of the seagrass structure in reducing predator access. Being unburied also had non-lethal consequences with surviving unburied clams having a reduced tissue biomass compared to buried clams.

  • In this system, predation was driven by the availability of prey when they undertake a risky behaviour (shallow burial). However, significant changes in behaviour may only occur once a threshold of habitat-former density is reached. In this instance, changes in behaviour were likely due to seagrass effects on sediment redox potential, which decreased significantly above 33% seagrass cover.

  • Our findings demonstrate that the negative effects of a habitat-former on the behaviour of associated species, via alteration of non-structural abiotic conditions, can outweigh any positive effects provided by increasing habitat structure as is commonly reported for habitat-formers.

  • History

    Publication title

    Journal of Animal Ecology

    Volume

    83

    Pagination

    388-396

    ISSN

    0021-8790

    Department/School

    Institute for Marine and Antarctic Studies

    Publisher

    Blackwell Publishing Ltd

    Place of publication

    9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

    Rights statement

    Copyright 2013 The Authors

    Repository Status

    • Restricted

    Socio-economic Objectives

    Marine biodiversity

    Usage metrics

      University Of Tasmania

      Exports

      RefWorks
      BibTeX
      Ref. manager
      Endnote
      DataCite
      NLM
      DC