Halogen systematics (Cl, Br, I) in Mid-Ocean Ridge Basalts: A Macquarie Island case study
journal contribution
posted on 2023-05-17, 14:51 authored by Kendrick, MA, Vadim Kamenetsky, Phillips, D, Honda, MThe abundance of halogens (Cl, Br and I) in the Earth's mantle has the potential to provide information about mantle metasomatism and volatile recycling in subduction zones. Basalt melts sample different parts of the Earth's mantle, but few data are available for Br or I in basalt melts, and the relative partitioning behaviour of these elements has not been investigated rigorously. To address these issues, we determined the abundances of Cl, Br and I in enriched Mid-Ocean Ridge Basalt (E-MORB) glasses from Macquarie Island in the southwest Pacific. The Macquarie Island glasses are fairly typical of Pacific MORB with MgO of ∼5.5. to 9wt%, 87Sr/ 86Sr of 0.70257-0.70276, 143Nd/ 144Nd of 0.51300-0.51306 and 3He/ 4He of ∼8Ra. These glasses provide a unique opportunity to investigate halogen partitioning behaviour, because their variable MgO contents and trace element signatures (e.g. La/Sm ∼1.4-7.9) result from different degrees of partial melting and fractional crystallisation. The combined measurement of Br/Cl, I/Cl and K/Cl, together with correlations between Cl and other trace elements, demonstrate that the halogens in the Macquarie Island glasses had a mantle source and were not influenced by seawater contamination. Log-log correlation diagrams indicate that Cl, Br and K were not statistically fractionated during partial melting, crystallisation or degassing of CO 2 from these melts. The behaviour of I is less well constrained and minor fractionation of I/Cl cannot be precluded during multi-stage melting and enrichment processes. The data indicate the mantle source of the Macquarie Island glasses was characterised by K/Cl of 13±4, Br/Cl of (3.7±0.5)×10 -3 and I/Cl of (130±100)×10 -6 (2σ uncertainties; weight ratios). The K/Cl ratio of the Macquarie Island glasses is equivalent to the median of all published MORB data. This suggests the Br/Cl and I/Cl values may also be representative of average MORB mantle values. © 2011 Elsevier Ltd.
Funding
Australian Research Council
AMIRA International Ltd
ARC C of E Industry Partner $ to be allocated
Anglo American Exploration Philippines Inc
AngloGold Ashanti Australia Limited
Australian National University
BHP Billiton Ltd
Barrick (Australia Pacific) PTY Limited
CSIRO Earth Science & Resource Engineering
Mineral Resources Tasmania
Minerals Council of Australia
Newcrest Mining Limited
Newmont Australia Ltd
Oz Minerals Australia Limited
Rio Tinto Exploration
St Barbara Limited
Teck Cominco Limited
University of Melbourne
University of Queensland
Zinifex Australia Ltd
History
Publication title
Geochimica et Cosmochimica ActaVolume
81Issue
MarchPagination
82-93ISSN
0016-7037Department/School
School of Natural SciencesPublisher
Pergamon-Elsevier Science LtdPlace of publication
The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1GbRights statement
Copyright 2011 Elsevier Ltd.Repository Status
- Restricted
Socio-economic Objectives
Expanding knowledge in the earth sciencesUsage metrics
Categories
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC