University of Tasmania
Browse

File(s) under permanent embargo

Headspace solid-phase microextraction sampling of endogenous aldehydes in biological fluids using a magnetic metal-organic framework/polyaniline nanocomposite

journal contribution
posted on 2023-05-20, 16:49 authored by Ghaedrahmati, L, Alireza GhiasvandAlireza Ghiasvand, Heidari, Nahid
Nanoporosity, crystal structure, good thermal and mechanical stability, high surface‐to‐volume ratio, nanoscale cavities, and uniform pore topology have made metal‐organic frameworks one of the best class of sorbents for adsorption/separation purposes. In this research, a metal‐organic framework/polyaniline magnetite nanocomposite was synthesized and intercalated by polyaniline by electrophoretic deposition on the surface of a thin steel wire, to prepare a solid‐phase microextraction fiber. It was coupled with gas chromatography‐flame ionization detection and employed for the extraction and determination of aldehydes in biological samples. The magnetic nanocomposite was characterized using scanning electron microscopy, energy dispersive X‐ray analysis, and Fourier transform infrared spectroscopy. Under the optimal experimental conditions, the calibration curves were linear in the range of 0.01‐1 and 0.1‐1 µg/L for hexanal and heptanal, respectively. The limits of detections for hexanal and heptanal were 0.001 and 0.01 µg/L, respectively. Intrafiber repeatability for six replicate analyses of 0.2 µg/L of the analytes was over the range 3.5‐7.1%. Interfiber (fiber‐to‐fiber) reproducibility, calculated by six replicate analyses of the same concentration using three different fibers, and was found to be 10.4‐15.7%. The developed procedure was successfully utilized for the analysis of hexanal and heptanal in human plasma and urine samples.

History

Publication title

Journal of Separation Science

Pagination

1-10

ISSN

1615-9314

Department/School

School of Natural Sciences

Publisher

Wiley-V C H Verlag Gmbh

Place of publication

Po Box 10 11 61, Weinheim, Germany, D-69451

Rights statement

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC