University of Tasmania
Browse

File(s) under permanent embargo

Hematocrit and blood osmolality in developing chicken embryos (Gallus gallus): In vivo and in vitro regulation

journal contribution
posted on 2023-05-20, 02:12 authored by Sarah AndrewarthaSarah Andrewartha, Tazawa, H, Burggren, WW
Hematocrit (Hct) regulation is a complex process involving potentially many factors. How such regulation develops in vertebrate embryos is still poorly understood. Thus, we investigated the role of blood pH in the regulation of Hct across developmental time in chicken embryos. We hypothesized that blood pH alterations in vitro (i.e., in a test tube) would affect Hct far more than in vivo because of in vivo compensatory regulatory processes for Hct. Large changes in Hct (through mean corpuscular volume (MCV)) and blood osmolality (Osm) occur when the blood was exposed to varying ambient temperatures (Ta's) and PCO2 in vitro alongside an experimentally induced blood pH change from ∼7.3 to 8.2. However, homeostatic regulatory mechanisms apparently limited these alterations in vivo. Changes in blood pH in vitro were accompanied by hydration or dehydration of red blood cells depending on embryonic age, resulting in changes in Hct that also were specific to developmental stage, due likely to initial blood gas and [HCO3-]v values. Significant linear relationships between Hct and pH (Hct/ΔpH = −21.4%/(pH unit)), Hct and [HCO3-] (ΔHct/Δ[HCO3-] = 1.6%/(mEq L-1)) and the mean buffer value (Δ[HCO3-]/ΔpH- = −13.4 (mEq L-1)/(pH unit)) demonstrate that both pH and [HCO3-] likely play a role in the regulation of Hct through MCV at least in vitro. Low Ta (24 °C) resulted in relatively large changes in pH with small changes in Hct and Osm in vitro with increased Ta (42 °C) conversely resulting in larger changes in both Hct and Osm. In vivo exposure to altered Ta caused age-dependent changes in Hct, demonstrating a trend towards increased Hct at higher Ta. Further, exposing embryos to a gas mixture where PCO2 = 5.1 kPa for > 4 h period at Ta of 37 or 42 °C also did not elicit a change in Hct or Osm. Presumably, homeostatic mechanisms ensured that in vivo Hct was stable during a 4–6 h temperature and/or hypercapnic stress. Thus, although blood pH decreases (induced by acute Ta increase and exposure to CO2) increase MCV and, consequently, Hct in vitro, homeostatic mechanisms operating in vivo are adequate to ensure that such environmental perturbations have little effect in vivo.

History

Publication title

Respiratory Physiology and Neurobiology

Volume

179

Issue

2-3

Pagination

142-150

ISSN

1569-9048

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright 2011 Elsevier B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the agricultural, food and veterinary sciences; Expanding knowledge in the biological sciences