University Of Tasmania

File(s) under permanent embargo

Hydrogen-atom abstraction from a model amino acid: dependence on the attacking radical

journal contribution
posted on 2023-05-18, 13:50 authored by Amos, RIJ, Chan, B, Easton, CJ, Radom, L
We have used computational chemistry to examine the reactivity of a model amino acid toward hydrogen abstraction by HO•, HOO•, and Br•. The trends in the calculated condensed-phase (acetic acid) free energy barriers are in accord with experimental relative reactivities. Our calculations suggest that HO• is likely to be the abstracting species for reactions with hydrogen peroxide. For HO• abstractions, the barriers decrease as the site of reaction becomes more remote from the electron-withdrawing α-substituents, in accord with a diminishing polar deactivating effect. We find that the transition structures for α- and β-abstractions have additional hydrogen-bonding interactions, which lead to lower gas-phase vibrationless electronic barriers at these positions. Such favorable interactions become less important in a polar solvent such as acetic acid, and this leads to larger calculated barriers when the effect of solvation is taken into account. For Br• abstractions, the α-barrier is the smallest while the β-barrier is the largest, with the barrier gradually becoming smaller further along the side chain. We attribute the low barrier for the α-abstraction in this case to the partial reflection of the thermodynamic effect of the captodatively stabilized α-radical product in the more product-like transition structure, while the trend of decreasing barriers in the order β > γ > δ ∼ ε is explained by the diminishing polar deactivating effect. More generally, the favorable influence of thermodynamic effects on the α-abstraction barrier is found to be smaller when the transition structure for hydrogen abstraction is earlier.


Publication title

The Journal of Physical Chemistry B








School of Natural Sciences


Amer Chemical Soc

Place of publication

1155 16Th St, Nw, Washington, USA, Dc, 20036

Rights statement

Copyright 2014 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania