We investigated how foraging ecotypes of female long-nosed fur seals Arctocephalus forsteri could be identified from vibrissa stable isotopes. We collected regrowths of vibrissae from adult females (n = 18) from Cape Gantheaume, Kangaroo Island, South Australia, from 2 breeding seasons (2016, 2017). The period represented by the regrowth was known, and 8 individuals were administered with 15N-enriched glycine as a biomarker to mark the start date of the regrowth. Non-glycine-marked and glycine-marked vibrissae were used to estimate the rate of the individual vibrissa regrowth. Using individual growth rates (0.18 ± 0.04 mm d-1), we reconstructed a stable isotope (δ13C and δ15N) time series for each regrowth and allocated them to corresponding at-sea locations either based on geolocation tracks (n = 14) or foraging habitat type (shelf or oceanic) based on diving data (n = 2) of the sampled seals. Mean (±SD) δ15N from vibrissa segments was higher when females foraged on the continental shelf region (16.1 ± 0.7‰, n = 29) compared to oceanic waters (15.1 ± 0.7‰, n = 106) in 2017, whereas it was similar in both regions in 2016 (shelf: 15.3 ± 0.4‰, n = 13; oceanic: 15.4 ± 0.4‰, n = 15). Based on the stable isotope signatures of vibrissa segments, model-based clustering analysis correctly classified 79.8% as originating from shelf or oceanic foraging habitats. This demonstrates the potential of using vibrissa stable isotopes for studying the foraging ecology of an important top marine predator.
Funding
Holsworth Wildlife Research Endowment
History
Publication title
Marine Ecology - Progress Series
Volume
628
Pagination
223-234
ISSN
0171-8630
Department/School
Institute for Marine and Antarctic Studies
Publisher
Inter-Research
Place of publication
Nordbunte 23, Oldendorf Luhe, Germany, D-21385
Rights statement
Copyright 2019 Inter-Research
Repository Status
Restricted
Socio-economic Objectives
Assessment and management of terrestrial ecosystems; Ecosystem adaptation to climate change