University of Tasmania
Browse

File(s) under permanent embargo

Identifying the potential of pulsed LED irradiation in synthesis: copper-photocatalysed C-F functionalisation

journal contribution
posted on 2023-05-19, 17:45 authored by Nicholls, TP, Johnathon RobertsonJohnathon Robertson, Michael GardinerMichael Gardiner, Alexander BissemberAlexander Bissember
It has been reported that pulsed irradiation can improve photosynthetic activity and phytochemical production in plants. Intrigued and inspired by these observations, we postulated that pulsed irradiation strategies may have broader implications in organic synthesis. We report here the results of a proof-of-concept study demonstrating that pulsed LED irradiation enhances the efficiency of a visible light-mediated photoredox-catalysed reaction. The design and construction of an inexpensive multiphase circuit (∼US$5) enabling power and pulse frequency modulation, which is connected to light-emitting diodes (LEDs), provides a source of pulsed visible light. This technology was then utilised to establish a novel copper-photocatalysed dual α-amino C–H/C–F functionalisation reaction. Pulsed blue LED irradiation was shown to be crucial for facilitating a much more efficient process and increasing the rate of product formation. Our results suggest that pulsed irradiation strategies have the potential to contribute to enhancing the synthetic utility and extending the scope of first row transition metal-based photoredox catalysts. We also anticipate that this approach will find wider applications in synthesis.

Funding

Collier Charitable Fund

History

Publication title

Chemical Communications

Volume

54

Issue

36

Pagination

4589-4592

ISSN

1359-7345

Department/School

School of Natural Sciences

Publisher

Royal Soc Chemistry

Place of publication

Thomas Graham House, Science Park, Milton Rd, Cambridge, England, Cambs, Cb4 0Wf

Rights statement

© Royal Society of Chemistry 2018

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC