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Impact:  This is the first study to comprehensively assess the impact of rare variants in 
idiopathic pulmonary fibrosis, using an agnostic analysis strategy. These results have advanced 
our understanding of IPF genetics by highlighting the etiologic importance of only two well-
established rare genetic variants (TERT and RTEL1), replicating common variants, and defining 
the heritability of IPF.  In aggregate, these findings simplify the genetics of IPF.   
 
This article has an online data supplement.  
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ABSTRACT 

Rationale 

Idiopathic pulmonary fibrosis is a rare, irreversible, and progressive disease of the lungs. 

Common genetic variants, in addition to non-genetic factors, have been consistently associated 

with IPF. Rare variants identified by candidate gene, family-based, and exome studies have also 

been reported to associate with IPF. However, the extent to which rare variants genome-wide 

may contribute to the risk of IPF remains unknown. 

Objectives 

We used whole-genome sequencing to investigate the role of rare variants, genome-wide, on 

IPF risk. 

Methods 

As part of the Trans-Omics for Precision Medicine Program, we sequenced 2,180 cases of IPF.  

Association testing focused on the aggregated effect of rare variants (minor allele frequency 

≤0.01) within genes or regions. We also identified individual variants that are influential within 

genes and estimated the heritability of IPF based on rare and common variants.  

Measurements and Main Results 

Rare variants in both TERT and RTEL1 were significantly associated with IPF. A single rare 

variant in each of the TERT and RTEL1 genes was found to consistently influence the aggregated 

test statistics. There was no significant evidence of association with other previously reported 

rare variants. The SNP-heritability of IPF was estimated to be 32% (s.e. 3%). 

Conclusions 
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Rare variants within the TERT and RTEL1 genes and well-established common variants have the 

largest contribution to IPF risk overall. Efforts in risk profiling or development of therapies for 

IPF that focus on TERT, RTEL1, common variants, and environmental risk factors are likely to 

have the largest impact on this complex disease. 

 

Abstract Word Count:  245 

 

Key Words:  Whole Genome Sequencing, Interstitial Lung Disease, TOPMed, Genetic 

Association Studies, Telomerase  
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INTRODUCTION 

Idiopathic pulmonary fibrosis (IPF) is a rare, irreversible, and progressive disease of the lungs 

that affects an estimated 5 million individuals worldwide and is associated with a median 

survival of 3-5 years.(1-3) IPF is associated with older age, cigarette smoking, and other 

environmental exposures.(4, 5) In addition, both rare mutations and common genetic variants 

are reported to contribute to the etiology of IPF, although the heritability of the disease 

remains unknown. Within 11p15, we discovered a gain-of-function(6) promoter variant in 

MUC5B (rs35705950) that is the dominant genetic risk factor for IPF, present in >50% of 

affected patients.(7, 8) Genome-wide association studies have identified and validated several 

other genetic loci with more moderate associations with IPF risk, including genes involved in 

telomerase maintenance, host defense, and cell-cell adhesion.(7-15) Candidate gene studies, 

family-based studies, and exome sequencing analyses have also identified rare mutations that 

associate with IPF.(16-26) However, critical unresolved questions concerning the genetics of IPF 

remain, including: 1) the extent and types of rare variants genome-wide that contribute to risk, 

2) relative contribution of rare vs. common variants to risk, and 3) the genetic heritability of IPF. 

To address these questions, we have conducted a whole-genome sequencing study of IPF with 

genome-wide analysis of rare variation. 

 

METHODS 

Study Populations and Sequencing 

To comprehensively investigate the role of rare variants in the development of IPF, we collected 

DNA from patients that were diagnosed with IPF according to criteria established by the 
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American Thoracic Society/European Respiratory Society from institutions across the United 

States, Europe, and Australia (Table E1). Whole-genome sequencing was performed by the 

National Institutes of Health (NIH) Trans-Omics for Precision Medicine (TOPMed) Program.(27) 

Subjects with IPF were compared to out-of-study controls selected from other TOPMed study 

populations, and identified as unaffected (without evidence of interstitial lung disease). Within 

the TOPMed program, sequencing of our case and control populations was performed at 

multiple centers (Table 1).  TOPMed sequencing data from the IPF samples were made available 

in separate “data freezes”, which we used to define our discovery and validation case 

populations. Samples that were included in TOPMed Freeze 8 were used for the discovery 

phase of the analysis, in which 1,264 IPF cases were compared to 1,257 unaffected controls 

selected from the COPDGene study (Table 1). The validation cohort comprised 916 IPF cases 

and 1,200 unaffected controls that were selected from the FHS and MESA studies, and included 

in TOPMed Freeze 10. Since the vast majority of our IPF cases were non-Hispanic white, we 

filtered our case and control samples to those with European ancestry using ancestry 

informative principal components, in order to minimize population stratification (see 

Supplemental Methods).  

Statistical Analysis 

We conducted a preliminary analysis of common genetic variants with a minor allele frequency 

(MAF) >0.01, genome-wide, using the combined discovery and validation cohorts. For our 

primary analyses of rare variants, we used SKAT-O(28) to conduct association testing of the 

aggregated effect of rare variants within genes or regions, defined as those with a MAF  ≤0.01. 

All analyses were adjusted for sex as a covariate in the models, as well as principal components 
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of genetic ancestry to control for any residual fine-scale population stratification. We used a 

Bonferroni correction for the effective number of tests (Keff) in each analysis, which is based on 

the estimated minimum achievable p-value for each test.(28) Any gene or window-based 

variant sets with a p-value<0.05/Keff were considered genome-wide significant and included in 

validation testing (1.76x10-5, 3.22x10-6, 3.24x1-8 for the LOF, LOF/missense, and window-based 

analyses respectively). Our primary analysis strategy included loss-of-function (LOF) variants 

aggregated within gene-based sets. For this primary analysis, gene sets with a p-value<5x10-4 

were also included in validation testing based on moderate association. Our pre-specified 

secondary analyses included LOF and missense variants aggregated within gene-based sets, and 

comprehensive testing of all rare variants aggregated into non-overlapping windows across the 

genome based on spatial clustering.(29) Variant sets that had been previously reported in the 

literature and were moderately associated with IPF in our secondary analyses (p-value<5x10-5 

for missense variant analysis or p-value<5x10-7 for window-based analysis), were also included 

in validation testing. We used a Bonferroni correction to assess significance in the validation 

cohort, adjusting for a total of 9 tests (p-value<5.5x10-3). We used the Rare Variant Influential 

Filtering Tool (RIFT)(30) to identify individual variants that had a strong influence on the 

aggregated test statistic for variant sets that were significantly associated with IPF in the 

validation cohort. For each analysis strategy, we performed a meta-analysis combining statistics 

from the discovery and validation cohorts. Finally, we used a genome-based restricted 

maximum likelihood method (GREML)(31) to estimate SNP-heritability in the combined dataset 

of discovery and validation samples, using all measured variants. Additional details of the 
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sample selection, variant filtering, and statistical methods can be found in the Supplemental 

Methods. 

 

RESULTS 

In our preliminary analysis of common variants, using the discovery and validation cohorts 

combined, we observed genome-wide significant (p-value<5x10-8) associations with loci 

previously identified in genetic studies of IPF, including variants in MUC5B, TERT, TERC, DSP, 

and others (Table E2). In addition, we identified two novel associations between IPF and 

variants in the third intron of MCL1 (OR=0.77; 95% CI 0.71-0.84; p-value=6.41x10-09) and the 

first intron of RNA gene ENSG00000260803 (OR=1.72; 95% CI 1.42-2.08; p-value=3.12x10-08). 

The findings from this common variant analysis are consistent with previous genome-wide 

association studies, and validate the utility of our case and control populations. 

In our primary rare variant analysis, which only included loss-of-function (LOF) variants 

aggregated into gene-based sets, none of the genes met criteria for genome-wide significance, 

but there were five genes that met our criteria for moderate association in the discovery cohort 

(Table 2; Figure 1). ALOX15B and RTEL1-TNFRSF6B (a read-through transcription between RTEL1 

and TNFRSF6B) were most strongly associated with IPF (p-value=2.81x10-5 and p-value=3.49x10-

5, respectively).  Rare variants in the RTEL1 (p-value=1.11x10-4), UNC93A (p-value=3.44x10-4), 

and NFX1 (p-value=4.67x10-4) genes were also moderately associated with IPF. These five genes 

were tested in our independent validation cohort of 916 IPF cases and 1,200 unaffected 

controls of European ancestry using a Bonferroni p-value threshold for significance that was 

corrected for a total of nine tests (p<5.5x10-3). In the validation analysis, only the RTEL1 gene 
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was statistically significant after adjustment for multiple testing (p-value=2.53x10-3). None of 

the other associations from our LOF analysis strategy replicated within the validation cohort; 

however, NFX1 was nominally significant (p-value=0.03).  

In a prespecified secondary analysis that included missense variants in addition to the 

LOF variants, aggregated into gene-base sets, TERT (p-value=3.25x10-16) and RTEL1 (p-

value=7.49x10-9) were both strongly associated with IPF, exceeding the criteria for genome-

wide significance in our discovery cohort (Table 2; Figure 2). The third strongest association 

signal in this analysis was the SPDL1 gene (p=2.73x10-5). Since a rare missense mutation within 

the SPDL1 gene has been previously reported to be associated with IPF,(32) we included this 

gene in our validation testing of rare LOF and missense variants along with TERT and RTEL1. In 

the validation cohort, the association with TERT was replicated with p-value=9.39x10-8. The 

associations with RTEL1 and SPDL1 did not reach our Bonferroni-corrected significance 

threshold for the validation cohort, but were nominally associated with IPF (p-value=2.07x10-2 

and p-value=1.63x10-2, respectively).  

In our final analysis of all rare variants, spatially aggregated within non-overlapping 

windows, none reached our genome-wide significance threshold. At a more moderate level of 

significance, a ~3200bp window (chr11:1284193-1287389) within the TOLLIP gene at 11p15 was 

associated with IPF (p-value=1.45x10-7; Table 2). Since previous studies have reported an 

association between IPF and variants within the TOLLIP gene,(10) we tested this window for 

association within the validation cohort, where the strength of the association was similar (p-

value=2.89x10-6). Given the proximity of this region to the influential gain-of-function 

polymorphism within the promoter of the MUC5B gene, rs35705950, we repeated the test of 
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association, adjusting for the MUC5B variant. After adjustment for the MUC5B promoter 

polymorphism, the window within TOLLIP was no longer associated with IPF (p-value=0.79).  

The results of a meta-analyses of the discovery and validation cohorts largely reflected 

the findings from the individual cohorts (Table 3; Figure 3). In the meta-analysis of LOF variants, 

RTEL1 had the strongest association signal, with a p-value just below the threshold for genome-

wide significance (p-value=4.25x10-6), followed by RTEL1-TNFRSF6B (p-value=9.12x10-5), SPSB2 

(p-value=1.02x10-4), and PARN (p =1.43x10-4). In the LOF/missense variant meta-analysis, both 

TERT and RTEL1 reached genome-wide significance levels. We tested the association with TERT, 

adjusting for the previously identified common IPF risk variant rs4449583 within TERT. (13) The 

aggregate test statistic remained significant (p-value=3.47x10-21), indicating that rare variants 

within TERT influence IPF risk independent of the effect of this common TERT variant. We also 

tested the association with RTEL1 after adjusting for the recently identified IPF risk variant 

rs41308092 (33). The aggregate test statistic for RTEL1 remained significant (p-value=6.11x10-

11). The evidence for association with SPDL1 was just below the level of genome-wide 

significance for the meta-analysis. In the window-based analysis, the window within TOLLIP was 

significantly associated with IPF, but not independent of the MUC5B variant, as demonstrated 

by the model adjusting for the rs35705950 genotype (p-value=1.0). None of the other p-values 

for rare variant associations changed substantially after adjustment for previously identified 

common IPF risk variants that reside on the same chromosome or the MUC5B promoter variant 

(Table 3).  

We did not adjust for age in our analyses, since age was missing for >10% of our cases. 

However, we performed a sensitivity analysis where association testing was repeated in the 
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discovery cohort with age as a covariate. Interestingly, we found that the p-values for TERT, 

RTEL1, and SPDL1 decreased after adjustment for age. The other p-values increased slightly, to 

a degree expected based on the reduced sample size (Table E4). 

Based on a previous study that found IPF patients without the MUC5B risk (T) allele at 

rs35705950 had a higher burden of rare missense or LOF variants in TERT than those without 

the risk allele,(34) we examined the frequency of rare variants in TERT and RTEL1 among IPF 

cases within strata defined by carriage of the MUC5B risk allele (GG vs. GT/TT). We did not find 

a significant difference in the burden of rare LOF and missense alleles in TERT. However, the 

burden of rare LOF and missense alleles in RTEL1 was greater in cases without the risk allele 

than cases carrying one or more copies of the risk allele (0.003 vs. 0.001, p-value=0.02). 

We applied a recently developed statistical method, the Rare Variant Influential Filtering 

Tool (RIFT),(30) to identify variants within the RTEL1, TERT, and SPDL1 variant sets that had a 

strong influence on the aggregate test statistic. A single variant in the RTEL1 LOF variant set, 

rs373740199, was classified as influential in both the LOF and LOF/missense variant sets, and in 

both cohorts (Figure E1). This variant is within the 30th exon of RTEL1, and was previously 

identified in an exome sequencing study.(26) The minor allele was present at a frequency of 

0.17% among IPF cases and absent among controls. A previously reported IPF risk variant in 

TERT,(24) rs199422297, was influential in the TERT LOF/missense variant set across cohorts 

(Figure E2). This is a stop-gain variant within the 5th exon of TERT, and the minor allele was 

present at a frequency of 0.25% among IPF cases, and absent among controls. These influential 

TERT and RTEL1 variants are reported in dbSNP to be rare among Europeans (MAF<0.01%) and 

absent in other populations. A single variant, rs116483731, first identified by exome-wide 
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association,(32) was also classified as influential in the SPDL1 LOF/missense variant set across 

cohorts (Figure E3). This variant is in the second exon of SPDL1, and the minor allele frequency 

was 2.2% among cases, and 0.8% among controls (OR=2.86; 95% CI 1.96-4.17). In dbSNP, the 

MAF is reported as 0.7% among Europeans, 0.07% among Africans, and is absent among other 

populations. While other variants may have contributed to the aggregate association test 

statistics, and to the overall risk of IPF, our analyses suggest that a single rare variant is largely 

responsible for observed associations in each of the RTEL1, TERT, and SPDL1 genes.  

We compared the minor allele counts of the three identified rare, influential variants in 

TERT, RTEL1, and SPDL1 in cases with and without a family history of disease. Among IPF cases 

with non-missing family history data, there were 1,065 sporadic cases and 837 cases with a 

family history of disease included in our analyses. There was no difference in the proportion of 

familial and sporadic IPF cases carrying the identified influential minor alleles in RTEL1 or 

SPDL1. While the minor allele of the influential rare variant in TERT, rs199422297, was observed 

among both sporadic and familial cases, the cases with a family history of disease were more 

likely to carry the TERT minor allele (2/1,065 sporadic vs. 8/837 familial; p-value=0.03). 

Finally, we used a genome-based restricted maximum likelihood method, GREML-

LMDS,(31) to estimate the heritability of IPF. Using whole-genome sequence data from the 

combined discovery and validation cohorts, we estimated the SNV-heritability of IPF to be 32% 

(s.e. 3%).  

 

DISCUSSION 
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Our findings indicate that rare variants in RTEL1, TERT, and likely SPDL1 contribute to the risk of 

IPF.  While these genes have been reported by others to contain rare variants associated with 

IPF, (13, 17, 20, 23-26, 32) we have found that a single rare variant in each of the implicated 

genes (RTEL1, TERT, and SPDL1) could be largely responsible for the observed associations.  Our 

whole-genome sequence analysis also suggests that rare variants identified in more focused 

studies of familial pulmonary fibrosis, including TERC,(17) the surfactant protein genes,(16, 18, 

21, 22, 35, 36) TINF2,(37) and ABCA3(38) do not appear to substantially contribute to the 

overall risk of IPF, at least in a sample of this size (Table E3). In order to further assess any 

potential effect of individual, previously reported rare variants within our combined dataset, 

we tabulated the number of minor alleles observed among cases and controls (Table E5). 

Although additional exceedingly rare variants may prove to be risk factors in unique families or 

relevant to specific IPF subtypes, given their frequency, these rare variants will only influence 

risk for a very small proportion of the IPF population.  Moreover, our common variant analysis 

highlights the importance of telomerase maintenance, host defense, and cell-cell adhesion 

genes in the development of IPF, and our overall analysis estimated IPF heritability to be 32%. 

In aggregate, our results have narrowed the focus of IPF genetics to a few well-established rare 

variants and replicated common variants.  

We found that the estimated SNP-heritability for IPF (based on all measured rare and 

common variants) was 32% (s.e. 3%). This estimate is similar to our previous estimates of 28% 

(s.e. 2%) to 31% (s.e. 3%), which were based only on common variants, excluding the MUC5B 

variant.(8) Based on these results, we hypothesize that the majority of IPF heritability can be 

explained by common genetic variation. However, larger sequencing datasets are needed to 
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explicitly estimate the contribution of rare variation to the overall heritability of IPF.  

Additionally, given the relatively high heritability of IPF, common variants could be used to 

identify early interstitial lung disease, especially among unaffected family members.(39, 40) 

Although early interstitial lung disease is known to have a poor prognosis,(40-42) screening 

guidelines for early interstitial lung disease have not been established and therapeutic 

intervention for early interstitial lung disease has not been studied.  

While identifying common IPF risk variants was not a primary aim of this study, 

preliminary analyses that included common variants identified two previously unreported loci 

that were significantly associated with IPF. Within these loci, the variants with the strongest 

associations include an indel in MCL1 (an apoptosis regulator in the BCL2 family at 1q21.2) and 

an indel in a lncRNA gene at 16p13.3. These indel variants may not have been well represented 

by the markers included in previous GWA studies, and will require validation in an independent 

cohort. 

This is the first whole-genome sequencing study of IPF, with comprehensive assessment 

of rare variant associations outside of the exome. However, this study also has some 

limitations. While this study included one of the largest collections of IPF patients to date, the 

identification of rare variants is highly dependent on sample size, and lower frequency IPF risk 

alleles could possibly be identified by larger studies. Consequently, extremely rare variants in 

genes, such as TERC, TINF2, ABCA3, and the surfactant protein genes, previously identified 

through targeted candidate gene studies may play a role in the heritability of IPF, however, 

given their frequency, were not identified in our study population and will only influence risk 

for a very small proportion of the IPF population.  In addition, the minor allele frequency 



18 
 

threshold used to define rare variants (MAF≤1%) is somewhat arbitrary, and the power to 

identify aggregated variant sets that are associated with IPF will depend on the distribution of 

allele frequencies among risk variants included in a set. This study was also limited to subjects 

of European ancestry, and there are likely different rare variants that influence IPF risk in 

populations of other ancestries. Finally, the effect of rare variants may depend on age, sex, 

family history of disease, or other common variant genotypes.  Additional analyses will be 

required to understand how interactions among genetic and non-genetic risk factors contribute 

to the etiology of IPF. 
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TABLES AND FIGURES 

 

Table 1: Summary of discovery and validation cohorts by case-control status 

 Discovery Validation 
 Cases Controls Cases Controls 
N 1264 1257 916 1200 
Sequencing Center Washington 

University 
Broad 
Institute 

Broad 
Institute 

Broad 
Institute 

Age, Mean (SD) 65.5 (9.4) 59.4 (6.3) 67.3 (9.1) 70.0 (9.4) 
Male, N (%) 895 (70.8%) 676 (53.8%) 609 (66.5%) 792 (66.0%) 
Ever smoker, N (%) 783 (68.1%) 1198 (95.3%) 563 (67.5%) 742 (61.8%) 

 

 

Table 2: Significant rare variant sets identified in the discovery cohort 

Variant Filtering, 
Aggregation Unit 

Gene/Window P-value, 
discovery 
cohort 

P-value, 
validation 
cohort§ 

Loss-of-function,  
by gene* 

UNC93A 3.44x10-4 0.346 
NFX1 4.67x10-4 0.029 
ALOX15B 2.81x10-5 0.705 
RTEL1 1.11x10-4 2.53x10-3 
RTEL1-TNFRSF6B 3.49x10-5 0.106 

Loss-of-function or 
missense, by gene† 

TERT 3.25x10-16 9.39x10-8 
RTEL1 7.49x10-9 0.021 
SPDL1 2.73x10-5 0.016 

All rare,  
by window‡ 

Chr11:1284193-
1287310 (TOLLIP) 1.45x10-7 2.89x10-6 

*Genes included in validation analysis based on p<5x10-4 

†Genes included in validation analysis based on genome-wide significance (p<3.2x10-6) or 
p<5x10-5 for previously reported genes 
‡Genes included in validation analysis based on genome-wide significance (p<3.2x10-8) or 
p<5x10-7 for previously reported genes  
§Significance in validation cohort assessed at p<5.5x10-3 
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Table 3: Meta-analysis p-values for rare variant sets included in validation analysis, with and 
without adjustment for common variants 

Variant Filtering, 
Aggregation Unit 

Chr Gene/Window Variant 
Set P-
value 

Common 
Variant 
Covariate 

Variant Set P-
value, adjusted 
for common 
variant  

Loss-of-function,  
by gene 

6 UNC93A 
(ENSG00000112494) 2.22x10-3 

rs2076295 2.18x10-3 
rs35705950 9.70x10-4 

9 NFX1 
(ENSG00000086102) 2.84x10-4 rs35705950 9.70x10-3 

17 ALOX15B 
(ENSG00000179593) 1.28x10-2 

rs1981997 1.56x10-2 
rs35705950 1.73x10-2 

20 RTEL1 
(ENSG00000258366) 4.25x10-6 

rs35705950 1.05x10-5 
rs41308092 4.22x10-6 

20 RTEL1-TNFRSF6B 
(ENSG00000026036) 9.12x10-5 rs35705950 6.71x10-5 

Loss-of-function 
or missense,  
by gene 

5 TERT 
(ENSG00000164362) 2.74x10-21 

rs4449583 3.47x10-21 
rs35705950 2.39x10-19 

5 SPDL1 
(ENSG00000040275) 4.81x10-6 

rs4449583 5.14x10-6 
rs35705950 1.43x10-6 

20 RTEL1 
(ENSG00000258366) 1.00x10-10 

rs35705950 3.83x10-11 
rs41308092 6.11x10-11 

All rare,  
by window 

11 11:1284193-
1287310 (TOLLIP) 1.04x10-11 rs35705950 1.00 
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Figure 1: Manhattan plot for rare loss-of-function variants (A) and loss-of-function/missense 
variants (B), aggregated by gene, in the discovery cohort. Horizontal lines represent the 
genome-wide significance thresholds adjusted for the effective number of tests (solid), and the 
total number of tests (dashed). 
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Figure 2: Manhattan plots for meta-analysis with rare loss-of-function variants (A) and loss-of-
function/missense variants (B). Horizontal lines represent the genome-wide significance 
thresholds adjusted for the total number of tests 
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