153027 - Implications of high.pdf (2.56 MB)
Implications of high-Mg# adakitic magmatism at Hunter Ridge for arc magmatism of the Fiji - Vanuatu region
journal contribution
posted on 2023-05-21, 13:17 authored by McCarthy, A, Trevor FalloonTrevor Falloon, Leonid Danyushevsky, Isabel SauermilchIsabel Sauermilch, Patriat, M, Jean, MM, Maas, R, Woodhead, JD, Yogodzinski, GMThe mostly submarine Hunter Ridge, located in the SW Pacific records a ~12 Myr to present history of magmatism related to the opening of the North Fiji Basin and subduction of oceanic lithosphere of the South Fiji Basin. Although the Hunter Ridge is probably composed primarily of an older Vitiaz-related basement, young volcanic features are present from Matthew Island to Kadavu Island. Some dredged volcanic rocks from these features have low-FeO and high-Mg# affinities, ranging from picrites to high-Mg# andesites and dacites. Elevated Sr (500 - 3400 ppm) and Sr/Y (50 - 240) coupled to fractionated (adakitic) rare-earth element patterns (La/Yb = 5 - 40, Gd/Yb = 1.5 - 5.7) indicate a garnet-signature derived from the melting of eclogite-facies basalt. Pacific-type MORB Nd-Hf-Pb isotopic ratios of these rocks contrast with the Indian-type MORB nature of the underlying North Fiji mantle but match closely the subducted South Fiji ocean crust. Low values of Th/La (< 0.15), Ba/La (< 22), unradiogenic 87Sr/86Sr (0.7026 - 0.7032) and Pacific-MORB Nd-Hf-Pb isotopic ratios indicate that sediment is a minor contributor to the source. The isotopic data clearly connect Hunter Ridge arc rocks of all compositions (picrites, low- to medium K2O arc lavas, basalts, high-Mg# andesites and dacites) to source components predominantly within the subducting plate. Unradiogenic 87Sr/86Sr (0.7026 - 0.7029) at high Sr abundances (700 - 1400 ppm) are common in hot-slab localities and are interpreted to reflect flux-melting of MORB under eclogite-facies conditions driven by dehydration in the underlying mantle of the subducting plate. Such an adakitic slab-melt component can be detected in more common (non-adakitic) arc rocks along the Hunter Ridge and Vanuatu arc as well. Evidence of slab melting along the western Pacific indicates that melting of subducting oceanic lithosphere is likely a common occurrence at convergent margins.
Funding
Australian Research Council
AMIRA International Ltd
ARC C of E Industry Partner $ to be allocated
Anglo American Exploration Philippines Inc
AngloGold Ashanti Australia Limited
Australian National University
BHP Billiton Ltd
Barrick (Australia Pacific) PTY Limited
CSIRO Earth Science & Resource Engineering
Mineral Resources Tasmania
Minerals Council of Australia
Newcrest Mining Limited
Newmont Australia Ltd
Oz Minerals Australia Limited
Rio Tinto Exploration
St Barbara Limited
Teck Cominco Limited
University of Melbourne
University of Queensland
Zinifex Australia Ltd
History
Publication title
Earth and Planetary Science LettersVolume
590Article number
117592Number
117592Pagination
1-14ISSN
0012-821XDepartment/School
Institute for Marine and Antarctic StudiesPublisher
Elsevier Science BvPlace of publication
Po Box 211, Amsterdam, Netherlands, 1000 AeRights statement
© 2022 The Author(s). Published by Elsevier B.V. This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License, (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Repository Status
- Open