University of Tasmania
Browse

File(s) under permanent embargo

In-syringe electrokinetic ampholytes focusing coupled with electrospray ionization mass spectrometry

journal contribution
posted on 2023-05-20, 22:47 authored by Ibraam MikhailIbraam Mikhail, Tehranirokh, M, Gooley, AA, Rosanne Guijt, Michael BreadmoreMichael Breadmore
A 25 μL analytical glass syringe has been used for isoelectric focusing (IEF) utilizing the stainless-steel needle and plunger as electrodes. The generation of protons and hydroxyl ions at the electrodes facilitated a neutralization reaction boundary (NRB) mechanism to focus different amphoteric compounds, such as hemoglobin, bovine serum albumin, R-phycoerythrin, and histidine, within minutes. After optimization of different experimental parameters affecting the IEF process and the coupling of the IEF syringe with electrospray ionization mass spectrometry (ESI-MS), a BGE composed of NH4Ac, 1.0 mM, pH 4.0, in 70.0% (v/v) acetonitrile was used for the IEF of histidine. A voltage of −200 V was applied for 5.0 min to accomplish the IEF and increased to -400 V during the infusion to ESI-MS at a flow rate of 4.0 μL/min. The coaxial sheath liquid consisting of 0.2% (v/v) formic acid was added at 4.0 μL/min. The detection limit was found to be 2.2 μg/mL and a nonlinear quadratic fit calibration curve was constructed for histidine over the range of 4.0-64.0 μg/mL with a correlation coefficient (r) = 0.9998. The determination of histidine in spiked urine samples as relevant for the diagnosis of histidinemia was demonstrated by the IEF syringe-ESI-MS system with accuracy from 88.25% to 102.16% and a relative standard deviation less than 11%.

Funding

Australian Research Council

Trajan Scientific Australia Pty Ltd

University of South Australia

History

Publication title

Analytical Chemistry

Volume

91

Issue

13

Pagination

8259-8266

ISSN

0003-2700

Department/School

School of Natural Sciences

Publisher

Amer Chemical Soc

Place of publication

1155 16Th St, Nw, Washington, USA, Dc, 20036

Rights statement

Copyright 2019 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC