University of Tasmania
Browse

File(s) under permanent embargo

In silico prediction of the G-protein coupled receptors expressed during the metamorphic molt of Sagmariasus verreauxi (Crustacea: Decapoda) by mining transcriptomic data: RNA-seq to repertoire

journal contribution
posted on 2023-05-18, 18:09 authored by Buckley, SJ, Quinn FitzgibbonQuinn Fitzgibbon, Gregory SmithGregory Smith, Ventura, T
Against a backdrop of food insecurity, the farming of decapod crustaceans is a rapidly expanding and globally significant source of food protein. Sagmariasus verreauxi spiny lobster, the subject of this study, are decapods of underdeveloped aquaculture potential. Crustacean neuropeptide G-protein coupled receptors (GPCRs) mediate endocrine pathways that are integral to animal fecundity, growth and survival. The potential use of novel biotechnologies to enhance GPCR-mediated physiology may assist in improving the health and productivity of farmed decapod populations. This study catalogues the GPCRs expressed in the early developmental stages, as well as adult tissues, with a view to illuminating key neuropeptide receptors. De novo assembled contiguous sequences generated from transcriptomic reads of metamorphic and post metamorphic S. verreauxi were filtered for seven transmembrane domains, and used as a reference for iterative re-mapping. Subsequent putative GPCR open reading frames (ORFs) were BLAST annotated, categorised, and compared to published orthologues based on phylogenetic analysis. A total of 85 GPCRs were digitally predicted, that represented each of the four arthropod subfamilies. They generally displayed low-level and non-differential metamorphic expression with few exceptions that we examined using RT-PCR and qPCR. Two putative CHH-like neuropeptide receptors were annotated. Three dimensional structural modelling suggests that these receptors exhibit a conserved extracellular ligand binding pocket, providing support to the notion that these receptors co-evolved with their ligands across Decapoda. This perhaps narrows the search for means to increase productivity of farmed decapod populations.

Funding

Australian Research Council

UTAS Nexus Aquasciences Pty Ltd

History

Publication title

General and Comparative Endocrinology

Volume

228

Pagination

111-127

ISSN

0016-6480

Department/School

Institute for Marine and Antarctic Studies

Publisher

Academic Press Inc Elsevier Science

Place of publication

525 B St, Ste 1900, San Diego, USA, Ca, 92101-4495

Rights statement

Copyright 2016 Elsevier Inc.

Repository Status

  • Restricted

Socio-economic Objectives

Fisheries - aquaculture not elsewhere classified

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC