153897 - Influence-based consequence assessment.pdf (1.69 MB)
Influence-based consequence assessment of subsea pipeline failure under stochastic degradation
journal contribution
posted on 2023-05-21, 14:22 authored by Adumene, S, T M Rabiul IslamT M Rabiul Islam, Dick, IF, Zarei, E, Inegiyemiema, M, Ming YangMing YangThe complexity of corrosion mechanisms in harsh offshore environments poses safety and integrity challenges to oil and gas operations. Exploring the unstable interactions and complex mechanisms required an advanced probabilistic model. The current study presents the development of a probabilistic approach for a consequence-based assessment of subsea pipelines exposed to complex corrosion mechanisms. The Bayesian Probabilistic Network (BPN) is applied to structurally learn the propagation and interactions among under-deposit corrosion and microbial corrosion for the failure state prediction of the asset. A two-step consequences analysis is inferred from the failure state to establish the failure impact on the environment, lives, and economic losses. The essence is to understand how the interactions between the under-deposit and microbial corrosion mechanisms’ nodes influence the likely number of spills on the environment. The associated cost of failure consequences is predicted using the expected utility decision theory. The proposed approach is tested on a corroding subsea pipeline (API X60) to predict the degree of impact of the failed state on the asset’s likely consequences. At the worst degradation state, the failure consequence expected utility gives 1.0822 × 108 USD. The influence-based model provides a prognostic tool for proactive integrity management planning for subsea systems exposed to stochastic degradation in harsh offshore environments.
History
Publication title
EnergiesVolume
15Issue
20Pagination
1-10ISSN
1996-1073Department/School
Australian Maritime CollegePublisher
MDPI AGPlace of publication
SwitzerlandRights statement
Copyright: © 2022 by the authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/Repository Status
- Open