University of Tasmania
Browse

File(s) not publicly available

Inhibition of Ice Nucleation by Slippery Liquid Infused Porous Surfaces (SLIPS)

journal contribution
posted on 2023-05-17, 23:49 authored by Peter Wilson, Lu, W, Xu, H, Kim, P, Kreder, MJ, Alvarenga, J, Aizenberg, J
Ice repellent coatings have been studied and keenly sought after for many years, where any advances in the durability of such coatings will result in huge energy savings across many fields. Progress in creating anti-ice and anti-frost surfaces has been particularly rapid since the discovery and development of slippery, liquid infused porous surfaces (SLIPS). Here we use SLIPS-coated differential scanning calorimeter (DSC) pans to investigate the effects of the surface modification on the nucleation of supercooled water. This investigation is inherently different from previous studies which looked at the adhesion of ice to SLIPS surfaces, or the formation of ice under high humidity conditions. Given the stochastic nature of nucleation of ice from supercooled water, multiple runs on the same sample are needed to determine if a given surface coating has a real and statistically significant effect on the nucleation temperature. We have cycled supercooling to freezing and then thawing of deionized water in hydrophilic (untreated aluminum), hydrophobic, superhydrophobic, and SLIPS-treated DSC pans multiple times to determine the effects of surface treatment on the nucleation and subsequent growth of ice. We find that SLIPS coatings lower the nucleation temperature of supercooled water in contact with statistical significance and show no deterioration or change in the coating performance even after 150 freeze-thaw cycles. © the Owner Societies 2013.

History

Publication title

Physical Chemistry Chemical Physics: Journal of European Chemical Societies

Volume

15

Pagination

581-585

ISSN

1463-9076

Department/School

College Office - College of Health and Medicine

Publisher

Royal Soc Chemistry

Place of publication

Thomas Graham House, Science Park, Milton Rd, Cambridge, England, Cambs, Cb4 0Wf

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the physical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC