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Modified atmosphere packaging (MAP) technology has been commercially viable since the 

1970s. Currently, MAP is extensively used worldwide to preserve the quality and extend the 

shelf-life of whole fresh fruits and vegetables, but is also increasingly used to extend the 

shelf-life of minimally processed fresh fruit and vegetables. This review discusses new 

processes and technologies that have been developed to improve quality preservation and 

consumer acceptability of minimally processed produce where high respiration rates and 

challenging degradation processes operate. Adoption of packaging technology improvements 

will be critical in meeting expectations of consumers for minimally processed products to 

consistently have fresh-like quality and to enable producers and retailers to maintain quality 

for longer distribution and display periods. Innovative approaches to achieve further 

extension of shelf-life include active MAP with produce-specific differentially permeable 

films, films that incorporate antimicrobial properties, edible coatings that confer barriers 

properties, and the use of non-traditional gases to modify respiration. Intelligent packaging 

innovations are also appearing, using packaging integrated sensor technologies to indicate 

maturity, ripeness, respiration rate and spoilage of fresh produce. Additionally there are new 
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opportunities for incorporating logistics tracking technologies and consumer communication 

into the design of packaging. Preservation technologies and associated packaging 

developments that can be combined with modified atmosphere are constantly evolving 

technology platforms. Adoption of optimal combinations of technology improvements will be 

critical in responding to commercial trends towards more minimally processed fresh-cut and 

ready-to-eat fruit and vegetable products.  
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1. Introduction 

Food packaging is the final operation of fresh produce processing that allows the products to 

be protected and safely distributed to consumers. Together with cold chain management, 

packaging allows the quality of fresh products to be preserved with extension of the shelf-life 

(Nicola and Fontana, 2014). There are increasing demands for extension of shelf-life to better 

meet longer and more global distribution chains, as well as rising consumer expectations for 

high and lasting quality in purchased fresh produce. Technologies for modified atmosphere 

packaged fresh whole produce and fresh-cut products are therefore continually evolving to 

meet these escalating needs for improved performance in shelf-life and quality retention. 

Food packaging is of particular importance to fresh horticultural produce as quality can only 

be maintained after harvest and not improved. When optimized, food packaging increases the 

convenience, safety and quality of food for consumers, while reducing the need for additives, 

food waste and the incidence of food poisoning (Robertson, 2012). This can produce 

significant cost savings and competitive advantages for food retailers and manufacturers 

(Coles et al., 2003). Modified atmosphere packaging (MAP) is an increasingly important type 

of packaging, particularly for fresh fruits and vegetables (Sandhya, 2010) as it can lower 

respiration rate, delay ripening and discoloration, prevent the build-up of off odors and 

flavors and inhibit growth of pathogens and spoilage organisms (Zhang et al., 2015). This 

ultimately enables extended shelf-life attributes which can facilitate the development of wider 

food distribution networks along extended supply chains (Sonneveld 2000). 

A further driver for improvements has been the increased consumer preference for more 

diverse and convenient forms of nutritious, fresh, healthy and easy to consume produce. 

Globally, the demand for fresh produce is increasing at a rate of 6% per annum (Dodd and 

Bouwer, 2014). Minimally processed products have a rapidly growing market particularly in 
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the US and the UK (Abadias et al., 2008; Kou et al., 2015). They are designed to maximize 

convenience for consumers, while maintaining freshness and nutritional quality (Oliveira et 

al., 2015). Minimally processed products are usually packed directly after harvest and 

processing and, ideally, are only handled once before reaching consumers (Sant'Ana et al., 

2012). However, in contrast to many packaged prepared meals, minimally processed salad 

vegetables and fruits are not heat treated prior to consumption. They can therefore be 

especially prone to the presence of human pathogens or the growth of spoilage organisms that 

could limit shelf-life (Oliveira et al., 2015). Further, minimal processing can lead to increased 

respiration rates and therefore higher rates of deterioration (Santos et al., 2014), biochemical 

changes and microbial spoilage (Sant’Ana et al., 2011; Martínez-Sánchez et al., 2012). New 

packaging solutions are being sought to address the many mechanisms that degrade quality 

and safety.  

In this review, we summarize recent MAP and associated packaging advances that have been 

developed to improve product quality and integrity, and provide greater benefits to 

consumers in fresh fruits and vegetables. In Section 2, we describe the key factors influencing 

the effectiveness of MAP of fresh fruits and vegetables and the areas that can be targeted for 

improvements. In Section 3, we profile the latest innovations in MAP technology, followed in 

Section 4 by a discussion on innovative packaging technologies that are complementary to 

MAP. In Section 5, we highlight the knowledge gaps that will need to be addressed to 

optimize the use of modern packaging technologies and technology combinations in the fresh 

fruits and vegetables industry.  
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2. Modified Atmosphere Packaging of Fresh Fruits and Vegetables 

Modifying gas composition for individual containers is referred to as MAP, and for bulk 

storage as MA. These are both designed to lower the respiration rate of the produce and 

influence the growth of microbial flora to extend the shelf-life of foods and contribute to 

improved food safety (Kader et al. 1989). This review focuses on MAP where both the 

packaging and gas atmospheres can be manipulated to help preserve the qualities of the 

produce. 

Recent applications of MAP have been effective for both climacteric fruits such as avocado 

(Sellamuthu et al., 2013), breadfruit (Roopa et al., 2015) and figs (Villalobos et al., 2014), 

and non-climacteric fruits such as pineapples (Finnegan et al., 2013), cherries (Colgecen and 

Aday, 2015), and oranges (Barrios et al., 2014). In general, for climacteric fruits, slowing 

respiration and ripening are the crucial functions of MAP, particularly for highly perishable 

fruits such as guava (Antala et al., 2015) and mango (Ramayya et al., 2012). Conversely, for 

both minimally processed non-climacteric fruits and vegetables, the role of MAP in 

preventing oxidative browning and the growth of microbial pathogens is of greater 

importance than slowing respiration and ripening processes (Horev et al., 2012).  

The shelf-life effects of MAP on a range of factors including organoleptic qualities 

(Sivakumar and Korsten, 2006; Díaz-Mula et al., 2011; Fagundes et al., 2015), bacteria 

growth (Posada-Izquierdo et al., 2014), fungal (usually yeast) growth (Bastiaanse et al., 2010; 

Caponigro et al., 2010), coloring – particularly for anti-browning (Gomes et al., 2012), fruit 

decay (Selcuk and Erkan, 2015) and prevention of chilling injuries (Cheng et al., 2015), have 

been studied for a very wide range of minimally processed horticultural products. Finnegan et 

al. (2013) examined the effects of intrinsic factors (origin, physiological age and seasonality) 

and extrinsic factors (cut-size, blade-sharpness and dipping treatments) on respiration rate of 
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fresh-cut pineapple chunks and concluded that, in general, physiological age and origin were 

found to be more important than season in determining the effects of MAP on quality 

attributes and shelf-life.  

 

2.1 Factors influencing effectiveness and design of MAP  

MA can be generated in the container passively by respiration of the fresh produce, as it 

consumes O2 and produces CO2. Minimum O2 and maximum CO2 concentrations can be 

controlled by the balance of the gas permeability of the packaging film. However, these 

levels can be established more rapidly by actively gas flushing with the desired gas. In bulk 

MA storage, gas composition is continuously maintained through control of the storage 

atmosphere by adjustment to set points using a gas supply.  

Low O2 levels (1-5%) are frequently the primary means of shelf-life management of fresh 

produce in MAP. In early applications of MAP, the principal objective of reduced O2 was to 

reduce the respiration rate of fresh fruits and vegetables to increase potential shelf-life. 

However, low O2 also inhibits the growth of aerobic microorganisms (Kader et al., 1989). 

Recent studies have shown that low O2 conditions can also prevent the development of 

desirable aromas in fresh melons (Amaro et al., 2012), or lead to the development of off-

odors in baby spinach (Tudela et al., 2013) suggesting that new technologies based on low O2 

levels should take into account the characteristics of the produce to prevent the development 

of anaerobic respiration conditions.  

Maintaining adequate CO2 levels (3-20%) in addition to low O2 levels is the most important 

factor in inhibiting aerobic microbes (Li et al., 2015; Wang et al., 2015). However, maximum 

levels of CO2 tolerance can vary greatly depending on produce (Sandhya, 2010). These range 
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from 2% for apples and pears to 15% for berries and spinach (Kader et al., 1989) with high 

levels leading to physiological breakdown of tissue.  

Maintaining high levels of relative humidity (85-95%) and reduced water loss (Kader and 

Watkins, 2000; Mangaraj et al., 2015) are a common outcome of MAP which can prove 

beneficial for many fresh fruits and vegetables. However, high relative humidity within MAP 

can also lead to increased pathogen growth, as seen with stem fungal growth on cherry 

tomatoes (Mistriotis et al., 2016), and should be managed to suit the commodity.  

Minimizing ethylene exposure is also know to help extend shelf-life. Ethylene is a plant 

hormone that regulates the growth and senescence of plant material. It is produced 

endogenously by many fruits and vegetables and can spike as a result of fresh cut wounding 

responses, but is also used exogenously to accelerate ripening. Recent work on ethylene and 

non-climacteric produce, as reviewed by Wills (2015), has determined both its importance in 

controlling senescence of fruits and vegetables previously considered unaffected by ethylene, 

and shown that adequate control of ethylene can reduce the need for expensive and energy 

intensive cold chain distribution systems. Minimizing ethylene exposure is therefore also a 

target for fresh-cut technologies as it is vital in minimizing respiration and extending shelf-

life of fresh produce (Wills, 2015). As ethylene levels can also play a major role in 

coloration, such as in tomato (Lee et al., 2012), technologies that inhibit or sense ethylene 

levels could be useful for managing color development of a range of fruits and vegetables, 

especially climacteric fruits such as guava (Kuswandi et al., 2013).  

Factors that influence gaseous composition, such as packaging permeability, are important 

variables in MAP applications. Packaging permeability is a function of polymer type and 

thickness, and for some polymers, it is heavily influenced by temperature and gas pressure 

gradients (Petracek et al., 2002). Alternatively, gaseous composition can be modified by 
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micro-perforations in the film, which are typically 30-350 µm and often of elliptical shape 

(González-Buesa et al., 2013). The native extent and form of perforation such as size, shape, 

and method of hole production, have been shown to be crucial in determining the 

effectiveness of MAP (Elwan et al., 2015). A further refinement of micro-perforation is the 

development of microporous films, where inert compounds are inserted into a film to create 

microscopic pores typically 0.1-1.5 µm wide (Scafati et al., 2013). Such films allow for very 

accurate control of gas permeability, and will become increasingly important to preserving 

fresh produce in MAP.  

 

2.2 Areas for improvements for MAP 

MAP applications have not always proven effective in increasing the shelf-life and safety of 

fresh produce (Li et al., 2015). For whole produce, the visual quality but not the organoleptic 

qualities of winter harvested iceberg lettuce was enhanced by MAP (Martı́nez and Artés, 

1999). In broccoli, low O2 regimes (< 0.25 kPa) applied to prevent yellowing also induced 

highly undesirable flavors and odors (Cameron, 2003). Studies on cherries have found that 

the effectiveness of MAP may be cultivar specific (Wang et al., 2015). This study found that 

with low permeability MAP liners, cherries accumulated high levels of ethanol, whereas high 

permeability MAP liners produced a fermentative off-taste after 4-6 weeks, demonstrating the 

importance of optimal gas transmission rates in maintaining produce.  

For fresh-cut produce, active MAP did not improve shelf-life and quality of crisphead lettuce 

(Mattos et al., 2013) when compared to passive MAP. Although low O2 regimes reduced 

browning of fresh-cut iceberg lettuce, it also increased the risk of survival and growth of 

Listeria monocytogenes (O'Beirne et al., 2015). Similarly, inconsistent results were obtained 

for MAP fresh-cut capsicum (Rodoni et al., 2015), where raised CO2 levels caused 
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physiological injury. Other MAP applications have proven successful for both broccoli and 

lettuce (Clarke, 2011). Therefore success will be more likely if both the MAP design and 

environment are optimized.  

There is therefore considerable scope for improvements in controlling MAP O2 and CO2 

transmission rates, and while these can be optimized by altering film perforation and 

thickness (Elwan et al. 2015, Serrano et al., 2006), the structures of conventional polymers 

have a limited ability to maintain ideal gas compositions. In such cases, innovations in 

packaging technology and postharvest technologies complementary to MAP are required.  

 

3. Recent Innovations in MAP Technology and Packaging  

Innovations in MAP technology (Table 1) and combinations with technologies 

complementary to MAP may allow for its wider use for fresh fruits and vegetables. Many of 

these new innovative technologies are reviewed below.  

 

3.1 New structural polymers 

Polymers that have been commonly used in MAP of fresh produce include low density 

polyethylene (LDPE), frequently in combination with ethylene-vinyl acetate (EVA), and 

other polymers derived from petrochemicals (Robertson, 2012). New structural polymers for 

fresh produce include linear low density polyethylene films catalyzed with metallocenes to 

produce films with improved structural properties and increased clarity (Robertson, 2012). 

Sea buckthorn was successfully preserved in a film with metallocene, aiding in the 

maintenance of berry structure and weight (Li et al., 2015).  
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New polymer trends in MAP innovation include a move towards bio-based and bio-

degradable, sustainable packaging materials such as polylactic acid (PLA) (Ramos et al., 

2014; Mistriotis et al., 2016), polylactide aliphatic copolymer (CPLA) (Siracusa et al., 2008), 

and polymers derived from high proportions of recycled plastics (Farris et al., 2009). PLA 

was observed to retain more red onion volatile compounds than polyethylene (PE) which is a 

considered a lower barrier to migration of key flavor compounds (Forney et al., 2012). Apart 

from its high cost, the feasibility of bio-based polymers have been limited due to its poor 

technical performance. However, incorporation of nanotechnology within the polymer blends 

has greatly improved the structure and permeability properties of bio-based polymers 

(Fortunati et al., 2013; Peelman et al., 2013). With improved structure and functionality, and 

the decreasing cost of this technology, polysaccharide based bio-polymers have the potential 

to increase packaging sustainability (Ferreira et al., 2016). 

 

3.2 New thermoresponsive functionality  

A major issue for effective control of MAP is the high dependence of respiration on 

temperature. Although cold chain technologies are used to reduce respiration and microbial 

growth, product on retail display or post purchase by the consumer can be subjected to 

temperature abuse. New improved polymer technologies are therefore being developed to 

allow for greater control over gas composition under changeable temperature conditions. For 

example, BreatheWay® is a membrane containing thermoresponsive crystalline polymers 

designed to respond to changes in temperature by allowing for higher gas transmission rates 

at higher temperatures. This technology has been shown to preserve optimal gas 

compositions over a wider range of temperature conditions for broccoli and iceberg lettuce 

(Clarke, 2011). It has also been shown to reduce ascorbic acid loss, maintain key flavors and 
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keep brighter color in MAP cherries more successfully than conventional MAP technologies 

(Wang et al., 2015).  

 

3.3 Nanotechnology functionality  

There is growing interest in the use of nanotechnology to enhance the functionality of 

packaging for fresh fruits and vegetables (Table 2). Nanoparticles can invest films with key 

antimicrobial, structural and barrier properties (Eleftheriadou et al. 2017). Nanotechnology 

can also increase the strength and mechanical properties of films (Ramos et al., 2014), and 

reduce their O2 transmission rates (Fortunati et al., 2013).  

For whole produce, packaging with antimicrobial compounds such as nano-titanium dioxide 

and nano-argentum (silver) inhibited fruit respiration and decay in Chinese bayberry (Wang 

et al., 2010), while chitosan coatings containing a nano-emulsion of mandarin essential oil 

aided in the preservation of green beans when combined with both high pressure and pulsed 

light processing treatments (Donsì et al., 2015).  

For fresh-cut produce, nano-zinc oxide inhibited ethylene production in fresh-cut apples (Li 

et al., 2011), silver nanoparticles embedded in SiO2 and TiO2 carriers demonstrated 

antimicrobial actitvity in packaged fresh-cut carrots (Becaro et al., 2015), and nano-CaCO3 

packaging inhibited browning of fresh-cut yams (Luo et al., 2015).  

Consumers however, have expressed concerns on the possible adverse health or 

environmental effects with the use of nanotechnology in food packaging. This includes fears 

of potential contamination of foods from the release of substances such as silver via 

migration from packaging (Su et al., 2015). Unless addressed, these concerns may restrict the 

widespread adoption of nanotechnology in packaging. 



12 

 

 

3.4 Non-conventional gas compositions 

The application of gases other than O2, N2 and CO2 for improving MAP has been extensively 

researched. Enriching the atmosphere of packaging environments with noble gases has been 

successfully trialed for fresh produce (Char et al., 2012; Wu et al., 2012; Silveira et al., 

2014). Elevated levels of argon (95%) extended the shelf-life of watercress (Pinela et al., 

2016), and prevented color change in rocket leaves (Baldassarre et al., 2015). High 

concentrations of argon (90%) inhibited mold growth in fresh-cut apple (Pardilla et al., 2013), 

and xenon increased the shelf-life of asparagus and cucumber, but the commercial viability of 

these gases may be limited by its high costs (Zhang et al., 2008; Artés et al., 2009).  

In general, the efficacy of non-conventional gases has been suggested to be related to their 

ability to lower the water activity of the packaged food (Caleb et al., 2013). Additionally, 

argon was shown to extend shelf-life by interfering with oxygen receptor sites of enzymes 

(Char et al., 2012). Helium increased O2
 diffusion, which, in turn, decreased the concentration 

gradient between the interior and exterior of cells, minimizing the potential for anaerobic 

fermentation and allowing storage of produce in very low O2 conditions (Robles et al., 2009). 

Earlier trials of other noble gases such as krypton and neon (Ben-Yehoshua et al., 1993) no 

longer appear to be under serious commercial consideration.  

In addition to noble gases, the efficacy of MAP has been improved by manipulating O2 levels 

in nonconventional ways. High O2 compositions successfully reduced browning and the 

development of anaerobic spoilage in eggplant (Li et al., 2014b). Packaged sweet cherries 

flushed with super atmospheric O2 (100 kPa) reduced ethylene production and extended 

shelf-life greater than those packaged with air, high CO2 or N2 (Wang et al., 2014). The 
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effectiveness of high O2 has been shown to be strongly dependent on the type of produce, and 

the temperature and length of storage (Kader and Ben-Yehoshua, 2000; Ghidelli et al., 2015).  

 

3.5 Non-conventional storage temperatures 

The application of temperature treatments outside of conventional cold chain conditions has 

also been researched. MAP with storage at subzero temperatures has the potential to greatly 

increase the potential shelf-life of fruits and vegetables that are not susceptible to chilling 

injuries. Subzero temperatures increased the storage life of MAP fresh vegetables such as 

turnips and swedes (Helland et al., 2016a) and fruits such as figs (Villalobos et al., 2016). 

Exploiting the gap between the freezing point of water and the ice crystallization point in 

produce through a process known as “super-cooling” can increase the shelf-life of a wide 

range of fruits and vegetables (James et al., 2011), and its combination with MAP could be a 

valuable future development in packaging technology. 

 

4. Innovative Packaging Technologies Complementary to MAP 

New food preservation technologies are emerging that have the potential to combine with 

MAP to considerably extend shelf-life and maintain quality of fresh fruits and vegetables. 

Active packaging MAP — where there is an interaction between food, packaging film and 

the environment — and intelligent packaging MAP — where food quality is monitored inside 

the packaging — are two new concepts used increasingly in food packaging innovation 

(Dobrucka and Cierpiszewski, 2014; Biji et al., 2015).  
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4.1 Active packaging  

Active packaging refers to packaging that is designed to absorb or release bioactive 

compounds from or into the package environment and thus provide a mechanism for 

improved preservation of produce. In MAP, this can be achieved by flushing pre-set gas 

mixtures into the package, allowing for the ideal gas equilibrium to be achieved earlier than 

passive MAP techniques (Banda et al., 2015; Helland et al., 2016b). Other methods include 

the use of scavengers and absorbers to achieve the desired packaging conditions. For fresh 

produce, the most commercially important form of active packaging are small sachets of 

oxidizable iron based compounds used as O2 scavengers (Kartal et al., 2012), which can 

prevent fruit discoloration and minimize chilling injuries (Ferreira et al., 2012). O2 

scavengers and absorbers have proven to be especially effective for reducing spoilage of 

oxygen sensitive fruit such as strawberries (Aday and Caner, 2013). Similarly CO2 

scavengers, such as calcium hydroxide, are increasingly being used in fresh produce 

packaging to delay senecence, and reduce browning and mould incidence (Lee, 2016).  

1-methylcyclopropene (1-MCP) is a compound that antagonizes ethylene by interacting with 

hormonal receptors in fruits and vegetables to prevent ethylene action. 1-MCP can delay 

ripening processes in climacteric fruits (Vanoli et al., 2016) and has considerable use in long 

term cold storage of pome fruit (Georgoudaki and Nanos, 2015). 1-MCP is increasingly being 

combined with MAP for other ethylene sensitive fresh produce (Li et al., 2016), and has also 

been shown to slow down senescence, color change and degreening in non-climacteric fruits 

(Li et al., 2016). 1-MCP is effective at very low concentrations, is non-toxic, and is widely 

available commercially (Vázquez-Celestino et al., 2016), so could potentially be used with a 

wide range of fresh fruits and vegetables. Other technologies, such as potassium 

permanganate, actively oxidize or absorb ethylene (Wills, 2015), and are beneficial for fruits 
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such as strawberry whose metabolic pathways are negatively affected by 1-MCP (Ku et al., 

1999). 

Other new active packaging technologies include absorbent trays and pads to remove excess 

fluid from fresh-cut produce (Bovi et al., 2016), antioxidant films to minimize oxidation 

reactions (Wrona et al., 2015), filter papers with additives such as vanillin and cinnamic acid 

known for their antimicrobial properties (Silveira, 2015), and ethanol vapor sachets that have 

been successfully trialed to enhance berry color and reduce fungal decay of table grapes 

(Candir et al., 2012). Film with antifog properties delayed senescence and loss of pigment 

stability for green chilies (Chitravathi et al., 2015a).  

 

4.2 Edible coatings 

Edible coatings and films are considered a subset of active packaging (Table 3). Given that 

they are both a packaging and a food component, the ideal edible coating should satisfy a 

range of requirements: good sensory attributes, high barrier and mechanical properties, 

biochemical physicochemical and microbial stability, simple technology and low raw 

material and processing cost, as articulated in recent reviews (Dhall, 2013; Corbo et al., 

2015). Recent advances in the incorporation of antimicrobial components into edible coatings 

is increasing their utility and use (Dhall, 2013).  

Edible coatings can be derived from a wide range of plant and animal sources (Dhall, 2013). 

Chitosan, derived from shellfish and arthropod waste, has become a common starting 

material for edible films and coatings in fresh fruits and vegetables. It has wide ranging 

antimicrobial properties (Leceta et al., 2015), and good film-forming characteristics 

(Pushkala et al., 2013). Chitosan can be mixed with very low cost materials such as banana 

flour to reduce costs without any loss in antimicrobial effectiveness (Pitak and Rakshit, 
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2011). The antimicrobial activity of chitosan films has been increased by the addition of other 

antimicrobial agents such as benzoic acid and ascorbic acid, both in normal and nano-sized 

forms (Cruz-Romero et al., 2013). Edible coatings based on plants materials such as xanthan 

gum and tapioca starch, have also shown to increase the shelf-life and quality of fresh 

produce (Galindo-Pérez et al., 2015; Pan et al., 2013). For example, a formulation of lactic 

acid, citric acid, lemongrass essential oil and Tween 80 preserved the sensory qualities of pre-

cut cauliflower while significantly decreasing microbial load (Boumail et al., 2016). 

Similarly, ascorbic and citric acid in edible films reduces browning and therefore maintain 

color of fresh-cut mango stored over 12 days (Robles-Sánchez et al., 2013).  

Recent studies have shown the potential to combine the benefits of edible coatings and MAP. 

MAP and a soy protein based edible coating helped maintain the anti-oxidant capacity of 

fresh-cut artichokes (Ghidelli et al., 2015). In contrast, an edible coating derived from 

chitosan, pectin and sodium caseinate, by itself did not significantly affect quality parameters 

(total soluble solids, acidity, browning index) of fresh-cut nectarine (Ramirez et al., 2015). 

However, when the edible coating was combined with MAP, shelf-life was extended to 7 

days. Similar results were also found with eggplant, with shelf-life extended to 9 days using a 

soy protein-cysteine based edible coating (Ghidelli et al., 2014). These results suggest that a 

combination of MAP with edible film technology could become an important approach in the 

packaging of fresh fruits and vegetables.  

Food producers have shown reluctance to transition from petrochemical derived plastic 

polymers to using edible coatings. This is due to concerns over costs and over performance, 

particularly in relation to shelf-life and durability of the edible films (Robertson, 2012). 

However, the development of new superior sources of coatings with durability could increase 

their widespread commercial adoption.  
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4.3 Intelligent packaging 

Intelligent packaging, also known as smart packaging, describes packaging incorporated with 

sensors to monitor the quality, safety, temperature, movement and condition of foods along 

the supply chain (Kuswandi et al., 2011; Jedermann et al., 2014). Recent examples, including 

radio frequency identification sensors, ripeness indicators and biosensors, are reviewed by 

Meng et al. (2014). Intelligent packaging can communicate both food safety and quality, or 

measurements that are indicative of these concepts (Toivonen et al., 2014), and could be a 

point of difference utilized in innovative packaging designs. Meng et al. (2014) suggested 

that the emerging consumer preferences for modern food safety technologies has promoted 

the growth of intelligent packaging.  

There exists a range of low cost intelligent packing options that provide visual information on 

the state of freshness. Fluorescent dyes incorporated within the packaging that can signal 

increases in O2 are a common method for optical detection of changes in gas composition 

(Hempel et al., 2012) as reviewed by Puligundla et al. (2012). Molybdenum ions changed 

color in the presence of ethylene which corresponded with ripeness factors in apples (Lang 

and Hübert, 2012), while bromophenol blue changed color with excess production of organic 

acid, indicating over-ripeness in guava (Kuswandi et al., 2013). Dyes that correspond to 

changes in CO2 concentration have been incorporated into chitosan coatings for kimchi 

(Meng et al., 2015), and the possibility exists for trialing this technology in coatings of fresh 

produce as well.  
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4.4 Packaging functionality  

The functionality of packaging is arguably maximized when packaging contains and protects 

products, while offering optimal convenience to consumers (Robertson, 2012). Improving 

packaging functionality is a rapidly evolving space in industry. However, there is little peer-

reviewed literature on the efficacy of these technologies.  

New innovations are constantly emerging in fresh produce packaging, as new advances allow 

for the design of packaging to play a greater role in protecting and preserving produce. Pact 

Group have developed Shocksorb® protective trays, replacing bubble wrap in packaging for 

delicate fruit, and Moisturelock® absorbent packaging, to replace moisture pads for bleeding 

fruits such as berries.  

Some fruits and vegetables are highly susceptible to mechanical and vibrational damage, and 

new packaging technology has been found to aid in preventing produce deterioration. Key 

influences on mechanical damage of packaged produce include the position of the produce 

within the package, the contact between individual produce items, and the ability of the 

package itself to absorb mechanical effects (Fadiji et al., 2016).  

Convenient packaging reduces food loss and waste through moderating portion size and 

easing handling operations (Wikström et al., 2014; Verghese et al., 2015). Through 

influencing portion control, producers can sell portions of fresh produce suitable for 

individual or multiple consumers, also allowing for rapid and easy preparation of meals.  

For fresh-cut products, new services giving consumers or food retailers set amounts of pre-

cut ingredients in separate packaging may also reduce food waste by minimizing cross-

contamination and spoilage (Sand, 2015). Resealable packaging allows for greater and more 

affordable serving sizes without increasing food waste due to unused produce decaying, 
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maximizing the shelf-life of a product (Ferreira et al., 2016) and increasing consumer 

desirability (Jinkarn and Suwannaporn, 2015).  

 

4.5 Complementary post-harvest technologies 

Current MAP systems alone may not be adequate for effectively preventing deterioration, and 

slowing microbial growth in fresh produce (Nicola and Fontana, 2014) or fully addressing the 

additional challenges for preservation of fresh-cut produce. Recent research has therefore 

focused on examining the potential synergistic effects of MAP when combined with another 

or even multiple post-harvest sanitation technologies (Table 4).  

UV-C treatments in combination with MAP slowed post-harvest senescence of rocket 

(Gutiérrez et al., 2015), maintained overall fruit and vegetable quality of watermelon and 

broccoli (Artés-Hernández et al., 2010; Martínez-Hernández et al., 2013), while UV-C treated 

pineapple was preferred by consumers to control samples (Manzocco et al., 2016). Effective 

treatments ranged from 0.2 to 6.0 kJ m−2 UV-C with packaging exposed to UV light requiring 

to be made of polymers capable of transmitting UV beams (Novák et al., 2016).  

For highly perishable products such as fresh-cut products, irradiation in combination with 

MAP has been suggested as a useful way to slow deterioration rates (Simko et al., 2015). 

Low dose irradiation (0.6 kGy) has been successfully used for packaged fruit, such as 

blueberry and cherry (Thang et al., 2016), and doses of 1 kGy have effectively preserved 

MAP watermelon suitable for use in refrigerated vending machines (Smith et al., 2017). 

Packaging to be irradiated must be manufactured from a polymer capable of withstanding 

material degradation (Novák et al., 2016).  
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Novel gas treatments prior to MAP could become a useful tool for extending produce shelf-

life. Exposing asparagus to extreme O2 deprivation (anoxia) prior to MAP lowered 

respiration rate, slowing the reduction of sugar and ascorbic acid levels (Techavuthiporn and 

Boonyaritthongchai, 2016). Exposing cherry tomatoes to 20% and 60% CO2 levels for 3 

hours before storage at 12°C increased the tartaric content compared with tomatoes exposed 

to air (Sangwanangkul et al., 2017), and similar treatments may be useful to replace or 

complement MAP. Hydrogen sulfide gas can act as a signaling regulator in plants to delay the 

postharvest senescence of broccoli in a dose-dependent manner (Li et al., 2014a). Following 

exposure to this gas, broccoli was shown to maintain higher levels of secondary metabolites, 

such as carotenoids, anthocyanin, and ascorbate, while down-regulating chlorophyll 

degradation related genes. Hydrogen sulfide gas released from sodium hydrosulfide has also 

been demonstrated to inhibit fungal growth on fresh-cut pears (Hu et al., 2014), and future 

trials could investigate its effectiveness in combination with MAP. 

Other technologies that have increased the efficacy of MAP include dipping treatments with 

natural antimicrobial products such as citral and carvacrol (Siroli et al., 2014), ascorbic acid 

(Li et al., 2014) and calcium lactate (Cefola et al., 2014). Ozone and chlorine wash sanitation 

treatments have been combined with MAP to successfully extend the shelf-life of green 

chilies (Chitravathi et al., 2015b). Similarly, ozone treatments combined with MAP extended 

the shelf-life of ready-to-eat capsicum strips (Horvitz and Cantalejo, 2015). Heat treatments 

(55 °C for 45 s) combined with MAP reduced browning and increased the shelf-life of fresh-

cut lotus root (Son et al., 2015). Prior treatment with neutral electrolyzed water (NEW) 

enhanced the shelf-life of MAP fresh-cut lettuce (Posada-Izquierdo et al., 2014).  
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5. Conclusion 

With global demand growing for fresh and particularly for minimally processed and fresh-cut 

produce, new and improving technologies will be required to preserve fruits and vegetables 

for longer duration while retaining their quality. While much is known on the benefits 

derived from MAP for preserving many important fruits and vegetables, new innovations in 

packaging and complementary post-harvest technologies to improve shelf-life and quality 

retention are still needed to meet consumer expectations.  

Small reductions in the use of food packaging materials can lead to large cost savings for 

producers, as well as significant reductions in waste. Both consumer preferences and 

government initiatives are driving the move towards more efficient and less wasteful 

packaging technologies. Important innovations could come from the re-use of packaging, 

packaging that requires less raw materials, and the use of eco-friendly raw materials where 

possible. Packaging designs that reduce food waste are also being investigated, and 

improvements in this area will be necessary to significantly lessen waste associated with food 

packaging.  

The use of sensors in intelligent packaging, already widespread in many cooked and 

processed products, is increasingly being found in fresh produce applications. This could help 

producers, retailers and consumers make informed choices about food quality and freshness.  

Additional studies are needed on consumer perceptions of the effect of MAP on quality of 

fruits and vegetables over time. While many studies have evaluated food safety effects of 

MAP, less work has been conducted on its effects on consumer acceptability and perceived 

freshness and convenience. There is also uncertainty about how consumer respond to 

additional information provided by intelligent packaging sensors incorporated into package 

marketing.  
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New packaging materials are being trialed, particularly bio-based and bio-degradable 

polymers. By incorporating nanotechnology, modern bio-polymers should overcome 

structural weaknesses present in some older bio-derived plastics. Similarly, nanotechnology 

is being used to incorporate materials such as copper into films to invest antimicrobial and 

ethylene control properties. Perforation, thickness and polymer type can all play crucial roles 

in the effectiveness of MAP, and choosing the correct MAP type can significantly enhance 

fruit and vegetable quality and shelf-life.  
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Table 1. Recent reported uses of novel packaging technologies with fresh produce 

Technology Company 

Produce 

type Novel aspect Reference 

     

Active trays Artibal Peach Label with cinnamon 

essential oil 

Montero-Prado et 

al. (2011) 

Antimold® 

ethanol vapor 

sachet 

Freund Table grape Ethanol vapor 

generating sachet to 

reduce fungal decay 

Candir et al. 

(2012) 

Antioxidant 

packaging 

Artibal Fresh 

mushroom 

Active coated 

polyethylene 

packaging 

Wrona et al. 

(2015) 

 

BreatheWay® Apio Sweet 

cherry 

Thermoresponsive 

crystalline polymers 

Wang et al. 

(2015)  



34 

 

Dri-Fresh® 

Resolve® 

absorbent pads 

Sirane Melon, kiwi 

fruit 

Cellulosic absorbent 

membrane pads 

Lloret et al. 

(2012) 

Freshness 

indicator 

ripeSense

® 

Guava Label changes color to 

indicate freshness 

Kuswandi et al. 

(2013) 

Fresh-R-Pax® 

absorbent pads 

Maxwell 

Chase 

Fresh-cut 

tomato 

Sodium carboxymethyl 

cellulose pads 

Ahmed et al. 

(2012) 

Oxyfree® 504 

oxygen absorber 

O-Buster Scarlet 

eggplant 

(Solanum 

gilo) 

Oxygen absorbing 

sachet 

Ferreira et al. 

(2012) 

PrimePro® 

ethylene 

remover 

Chantler Sweet 

cherry 

Proprietary active 

packaging liner 

Wang et al. 

(2015) 

 

 

 

 

Table 2. Recent reported uses of nanotechnology to enhance the functionality of 

packaging materials 

Nanotechnology 

type 

Polymer type Functionality Produce 

applications 

Reference 

  
  

 
 

Cellulose 

nanocrystals, silver 

nanoparticles 

PLA  barrier 

performance 

against O2, 

water vapor 

and light 

Fresh-cut 

melon and 

kiwifruit 

Lloret et al. (2012); 

Fortunati et al. 

(2013) 

Thymol and 

modified 

montmorillonite 

PLA  mechanical 

properties,  

glass 

Not given Ramos et al. (2014) 
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transmission 

temperature 

Nanoemulsion of 

mandarin essential 

oil 

Chitosan  

antimicrobial 

activity 

Green beans Donsì et al. (2015) 

Silver nanoparticles LDPE  

antimicrobial 

activity 

Fresh-cut 

carrots 

Becaro et al. (2016) 

Titanium oxide 

nanocomposite 

LDPE  

antimicrobial 

activity 

Pears Bodaghi et al. 

(2013) 

Nano-calcium 

carbonate 

LDPE  retention of 

fruit quality 

Fresh-cut 

Chinese 

yam 

Luo et al. (2015) 

Montmorillonite Edible film  water vapor 

permeability 

Acerola Azeredo et al. 

(2012) 

Nanofibrillated 

cellulose 

Biocomposit

e film 

 water vapor 

permeability 

Not given Sirviö et al. (2014) 

 

 

 

Table 3. Recent examples of edible coatings for fresh fruits and vegetables 

Edible film Uses Whole 

(W) or 

fresh-cut 

(F) 

Functionality Reference 

Chitosan Baby carrot W Retained 

positive color 

and texture 

Leceta et al. 

(2015) 

 

Antimicrobial 

enriched 

Broccoli F Improved 

microbial 

control of 

chitosan 

Alvarez et al. 

(2013) 
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Essential oil 

enriched 

Green bean W Improved 

microbial 

control of 

chitosan 

Donsì et al. 

(2015) 

Alginate Pineapple F Greater shelf-

life and quality 

retention 

Azarakhsh et al. 

(2014) 

Aloe arborescens Peach, plum W Delayed color 

change. 

Reduced 

weight loss 

Guillén et al. 

(2013) 

Aloe vera Kiwifruit F Extended 

shelf-life while 

maintaining 

sensory 

properties 

Benítez et al. 

(2015) 

Banana flour (in 

composite with 

chitosan) 

Asparagus, 

baby corn, 

Chinese 

cabbage 

F Protected 

against S. 

aureus activity 

Pitak and 

Rakshit (2011) 

Carboxymethyl 

cellulose 

Apple F Combined 

with ascorbic 

acid dips to 

reduce 

browning 

Koushesh Saba 

and Sogvar 

(2016) 

Cassava starch Apple F Combined 

with essential 

oils to inhibit 

microbial 

growth 

Oriani et al. 

(2014) 

Fruit and vegetable 

residue flour 

Acerola W Reduced 

weight loss 

Ferreira et al. 

(2015) 

Gum arabic enriched 

with calcium 

chloride 

Mango W Reduced 

chilling injury 

and electrolyte 

leakage 

Khaliq et al. 

(2016) 

Soy-based Artichoke F Combined 

with MAP to 

maintain 

Ghidelli et al. 

(2015) 
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antioxidant 

capacity 

Tapioca starch with 

cinnamon oil 

Apple F Reduced 

microbial 

growth and 

ethylene 

production 

Pan et al. (2013) 

Xanthan gum with 

nanocapsules 

Apple F Decreased 

respiration rate 

by 63% 

Galindo-Pérez et 

al. (2015) 

 

 

 

 

 

 

 

 

Table 4. Recent reported uses of complementary technologies with fresh produce in 

modified atmosphere packaging 

Technology Produce type Whole (W) 

or fresh-cut 

(F) 

Functionality Reference 

 

Antimicrobial 

dips 

Apple, 

eggplant, 

nectarine 

F Reduced 

biological and 

biochemical 

deterioration 

Cefola et al. (2014); Li 

et al. (2014b); Siroli et 

al. (2014) 
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Chlorine 

wash 

Green chili W 

 

Extended 

shelf-life by 6 

days 

Chitravathi et al. 

(2015b) 

Electrolyzed 

water 

Lettuce F Extended 

shelf-life 

stored at 8°C 

Posada-Izquierdo et al. 

(2014) 

Irradiation Blueberry, 

cherry 

W Suitable for 

phyto-sanitary 

treatment. Did 

not affect 

shelf-life 

Thang et al. (2016) 

Ozone Green chili W Extended 

shelf-life by 14 

days 

Chitravathi et al. 

(2015b) 

UV-C Watercress W Reduced E. 

coli 

Hinojosa et al. (2015) 

 

 


