Interactive effects of canopy-driven changes in light, scour and water flow on microscopic recruits in kelp
Ecosystem engineering kelp forms habitat and influences associated communities by altering abiotic conditions. These conditions can also affect the engineer's own demographic rates but the mechanisms underpinning these feedbacks are not well known. Here, we tested the interactive effects of three abiotic factors engineered by the Australasian kelp Ecklonia radiata (light, water flow and scour) on the early survivorship and growth of its outplanted microscopic recruits. After six weeks, recruit survivorship was high in the absence of scour and low light (2–3 times higher than when scour was present) and under low water flow-ambient light conditions. Growth of sporophytes was strongly related to light, with recruits under ambient light approximately four times larger after six weeks. Overall, reduced scour (for survivorship) and ambient light (for growth) appear crucial for maximising E. radiata recruitment suggesting a healthy forest can provide microenvironments to enhance survivorship while gaps in the canopy enhance growth.
History
Publication title
Marine Environmental ResearchVolume
171Article number
105450Number
105450Pagination
1-8ISSN
0141-1136Department/School
Institute for Marine and Antarctic StudiesPublisher
Elsevier Sci LtdPlace of publication
The Boulevard, Langford Lane, Kidlington, Oxford, England, Oxon, Ox5 1GbRights statement
© 2021 Published by Elsevier Ltd.Repository Status
- Restricted