Eucalyptus nitens is a species that is adapted to low temperature. This study examines xanthophyll-cycle engagement in E. nitens seedlings exposed to cold-induced photoinhibitory conditions under different levels of irradiance and nutrient status. Xanthophyll-cycle pool size indicated an increased requirement for light energy dissipation under high irradiance and low nutrient status. Greater sensitivity to photoinhibition of non-shaded seedlings indicated that sustained xanthophyll-cycle engagement may occur in response to damaged chlorophyll. Within irradiance treatments, fertilised seedlings had higher photochemical efficiency and faster recovery from photoinhibition than unfertilised seedlings. These results demonstrate that fertilised compared to unfertilised seedlings can utilise a greater proportion of incident light under cold temperature conditions.