University of Tasmania
Browse

File(s) under permanent embargo

Interannual and decadal temperature variability in the southwest Pacific Ocean between 1955 and 1988

Version 2 2024-07-03, 00:00
Version 1 2023-05-25, 23:44
journal contribution
posted on 2024-07-03, 00:00 authored by Neil HolbrookNeil Holbrook, Nathaniel BindoffNathaniel Bindoff
The spatial and temporal variability of the southwest Pacific Ocean is examined with the aim of describing the physical processes operating on interannual and decadal timescales. The study takes advantage of a new temperature atlas of the upper 450 m of the southwest Pacific Ocean, obtained from 40 000 bathythermograph profiles between 1955 and 1988. Rotated principal components analysis was used to filter the important spatial and temporal scales of temperature variability in the data. Three different analyses are presented. They include two intraocean analyses and a joint analysis of subsurface ocean temperature, sea level pressure, and surface winds. The dominant El Niño mode describes the large vertical excursions of the thermocline in the western tropical Pacific in response to atmospheric forcing at a 3-6-month lag. More importantly, most of the retained modes, outside of the equatorial region, have time variations that correlate with El Niño. One ocean mode, with a spatial pattern representing sea surface temperature anomalies in the western Coral Sea (linked to the interannual migration of the South Pacific convergence zone), correlates significantly with (at the 99% level) and leads (by 3-6 months) the Southern Oscillation index (SOI), suggesting that sea surface temperature anomalies in this region may be a useful indicator for the onset of El Niño. A separate mode whose spatial pattern corresponds to the main oceanographic gyre also shows statistically significant temperature variations in phase with, or slightly leading, the SOI. The main decadal variations occur in the midlatitudes, in the subtropical gyre, and in another mode associated with sub-Antarctic mode water (SAMW). The subtropical gyre warmed to a maximum in the mid-1970s and has been cooling since. In the SAMW a long-term warming of the upper 100 m of the southwest Tasman Sea is identified between 1955 and 1988. The depth-integrated warming in this region is found to be about 0.015°C yr-1, representing a contribution to sea level rise, through thermal expansion, of about 0.3 mm yr-1.

History

Publication title

Journal of Climate

Volume

10

Issue

5

Article number

5

Number

5

Pagination

1035-1049:15

ISSN

0894-8755

Department/School

Australian Antarctic Program Partnership, Oceans and Cryosphere

Publisher

AMER METEOROLOGICAL SOC

Publication status

  • Published

UN Sustainable Development Goals

13 Climate Action, 14 Life Below Water

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC