University of Tasmania
Browse
- No file added yet -

Jet jumping: low-frequency variability in the Southern Ocean

Download (2.51 MB)
journal contribution
posted on 2023-05-19, 08:51 authored by Chapman, CC, Hogg, AMCC
The authors study intrinsic variability in the position of jets in a b-plane channel ocean with simple topography using a quasigeostrophic numerical model. This study links the variability in jet position with abyssal anticyclones that form as a result of interaction of mesoscale eddies and subsurface topography, reminiscent of such flows as the Zapiola anticyclone. A simple dynamical framework explaining this behavior is developed. In this framework, this study shows that the topographic anticyclones form closed regions of homogenized yet time-varying potential vorticity. Neighboring topographic anticyclones are coupled by eddy fluxes. Interaction of a baroclinic jet with these two (or more) anticyclones can drive variability in local jet strength. Predictions of the dynamical framework are then compared with the results of the numerical model, and it is demonstrated that this model has merit in explaining the observed model variability. This study argues that this simple mode of variability has relevance for the ocean.

History

Publication title

Journal of Physical Oceanography

Volume

43

Issue

5

Pagination

990-1003

ISSN

0022-3670

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Meteorological Soc

Place of publication

45 Beacon St, Boston, USA, Ma, 02108-3693

Rights statement

Copyright 2013 American Meteorological Society

Repository Status

  • Open

Socio-economic Objectives

Measurement and assessment of marine water quality and condition

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC