posted on 2023-05-19, 08:51authored byChapman, CC, Hogg, AMCC
The authors study intrinsic variability in the position of jets in a b-plane channel ocean with simple topography using a quasigeostrophic numerical model. This study links the variability in jet position with abyssal anticyclones that form as a result of interaction of mesoscale eddies and subsurface topography, reminiscent of such flows as the Zapiola anticyclone. A simple dynamical framework explaining this behavior is developed. In this framework, this study shows that the topographic anticyclones form closed regions of homogenized yet time-varying potential vorticity. Neighboring topographic anticyclones are coupled by eddy fluxes. Interaction of a baroclinic jet with these two (or more) anticyclones can drive variability in local jet strength. Predictions of the dynamical framework are then compared with the results of the numerical model, and it is demonstrated that this model has merit in explaining the observed model variability. This study argues that this simple mode of variability has relevance for the ocean.
History
Publication title
Journal of Physical Oceanography
Volume
43
Issue
5
Pagination
990-1003
ISSN
0022-3670
Department/School
Institute for Marine and Antarctic Studies
Publisher
Amer Meteorological Soc
Place of publication
45 Beacon St, Boston, USA, Ma, 02108-3693
Rights statement
Copyright 2013 American Meteorological Society
Repository Status
Open
Socio-economic Objectives
Measurement and assessment of marine water quality and condition