Aim To describe the spatial and temporal pattern of landscape burning with increasing distance from Aboriginal settlements. Location Central Arnhem Land, a stronghold of traditional Aboriginal culture, in the Australian monsoon tropics. Methods Geographical information system and global positioning system technologies were used to measure spatial and temporal changes in fire patterns over a one decade period in a 100 × 80 km area that included a cluster of Aboriginal settlements and a large uninhabited area. The major vegetation types were mapped and fire activity was assessed by systematic visual interpretation of sequences of cloud-free Landsat satellite images acquired in the first (May to July) and second (August to October) halves of the 7-month dry season. Fire activity in the middle and end of one dry season near an Aboriginal settlement was mapped along a 90-km field traverse. Canopy scorch height was determined by sampling burnt areas beside vehicle tracks. Results Satellite fire mapping was 90% accurate if the satellite pass followed shortly after a fire event, but the reliability decayed dramatically with increasing time since the fire. Thus the satellite mapping provided a conservative index of fire activity that was unable to provide reliable estimates of the spatial extent of individual fires. There was little landscape fire activity in the first half of the dry season, that was mostly restricted to areas immediately surrounding Aboriginal settlements, with burning of both inhabited and uninhabited landscapes concentrated in the second half of the dry season. The mean decadal fire indices for the three dominant vegetation types in the study area were three in the plateau savanna, two in the sandstone and five in the wet savanna. The spatial and temporal variability of Aboriginal burning apparent in the satellite analyses were verified by field traverse surrounding a single settlement. Fires set by Aborigines had low scorch height of tree crowns reflecting low intensity, despite generally occurring late in the dry season. Conclusions Our findings support the idea that Aboriginal burning created a fine-scale mosaic of burnt and unburnt areas but do not support the widely held view that Aboriginal burning was focused primarily in the first half of the dry season (before July). The frequency and scale of burning by Aborigines appears to be lower compared with European fire regimes characterized by fires of annual or biennial frequencies that burn large areas. The European fire regime appears to have triggered a positive feedback cycle between fire frequency and flammable grass fuels. The widely advocated management objective of burning in the first half of the dry season burning provides one of the few options to control fires once heavy grass fuel loads have become established, however we suggest it is erroneous to characterize such a regime as reflecting traditional Aboriginal burning practices. The preservation of Aboriginal fire management regimes should be a high management priority given the difficulty in breaking the grass-fire cycle once it has been initiated.