University of Tasmania
Browse

File(s) under permanent embargo

Leaves, not roots or floral tissue, are the main site of rapid, external pressure-induced ABA biosynthesis in angiosperms

journal contribution
posted on 2023-05-19, 15:08 authored by Zhang, F-P, Frances SussmilchFrances Sussmilch, David NicholsDavid Nichols, Cardoso, AA, Timothy BrodribbTimothy Brodribb, McAdam, SAM
Rapid biosynthesis of abscisic acid (ABA) in the leaf, triggered by a decrease in cell volume, is essential for a functional stomatal response to vapour pressure deficit (VPD) in angiosperms. However, it is not known whether rapid biosynthesis of ABA is triggered in other plant tissues as well. Through the application of external pressure to flower, root and leaf tissues, we test whether a reduction in cell volume can trigger rapid increases in ABA levels across plant body in two species Solanum lycopersicum and Passiflora tarminiana. Our results show that, in contrast to rapid ABA synthesis in the leaf, flower and root tissue did not show a significant, rapid increase in ABA level in response to a drop in cell volume over a short time-frame, suggesting that fast ABA biosynthesis occurs only in leaf, not in flower or root tissues. A gene encoding the key, rate-limiting carotenoid cleavage enzyme (9`-cis-epoxycarotenoid dioxygenase, NCED) in ABA biosynthetic pathway in S. lycopersicum, NCED1, was unregulated to lesser degree in flowers and roots compared to leaves in response to applied pressure. In both species, floral tissues contained substantially lower levels of NCED substrate 9`-cis-neoxanthin than leaves, and this ABA precursor could not be detected in roots. Slow and minimal ABA biosynthesis was detected after 2 h in petals, indicating that floral tissue is capable of synthesising ABA in response to sustained water deficit. Our results indicate that rapid ABA biosynthesis predominantly occurs in the leaves, and not in other tissues.

History

Publication title

Journal of Experimental Botany

Volume

69

Issue

5

Pagination

1261-1267

ISSN

0022-0957

Department/School

School of Natural Sciences

Publisher

Oxford Univ Press

Place of publication

Great Clarendon St, Oxford, England, Ox2 6Dp

Rights statement

Copyright 2018 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC