posted on 2023-05-19, 04:37authored byvan der Sleen, P, Dzaugis, MP, Gentry, C, Hall, WP, Vicki HamiltonVicki Hamilton, Helser, TE, Matta, ME, Underwood, CA, Zuercher, R, Black, BA
The productivity and functioning of Bering Sea marine ecosystems are tightly coupled to decadal-scale environmental variability, as exemplified by the profound changes in community composition that followed the 1976-1977 shift from a cool to a warm climate regime. Longer-term ecosystem dynamics, including the extent to which this regime shift was exceptional in the context of the past century, remain poorly described due to a lack of multi-decadal biological time series. To explore the impact of decadal regime shifts on higher trophic levels, we applied dendrochronology (tree-ring science) techniques to the otolith growth-increment widths of Pacific ocean perch Sebastes alutus (POP) collected from the continental slope of the eastern Bering Sea. After crossdating, 2 chronology development techniques were applied: (1) a regional curve standardization (RCS) approach designed to retain as much low-frequency variability as possible, and (2) an individual-detrending approach that maximized interannual synchrony among samples. Both chronologies spanned the years 1919-2006 and were significantly (p < 0.001) and positively correlated with sea surface temperature (March-December). The RCS chronology showed a transition from relatively slow to fast growth after 1976-1977. In both chronologies, the highest observed growth values immediately followed the regime shift, suggesting that this event had a critical and lasting impact on growth of POP. This growth pulse was, however, not shared by a previously published yellowfin sole Limanda aspera chronology (1969-2006) from the eastern Bering Sea shelf, indicating species- or site-specific responses. Ultimately, these chronologies provide a long-term perspective and underscore the susceptibility of fish growth to extreme low-frequency events.
History
Publication title
Climate Research
Volume
71
Pagination
33-45
ISSN
0936-577X
Department/School
Institute for Marine and Antarctic Studies
Publisher
Inter-Research
Place of publication
Nordbunte 23, Oldendorf Luhe, Germany, D-21385
Rights statement
Copyright 2016 Inter-Research
Repository Status
Restricted
Socio-economic Objectives
Global effects of climate change (excl. Australia, New Zealand, Antarctica and the South Pacific) (excl. social impacts)