University of Tasmania
Browse

Longitudinal analytical approaches to genetic data

Download (387.92 kB)
journal contribution
posted on 2023-05-20, 18:46 authored by Chiu, Y-F, Justice, AE, Phillip MeltonPhillip Melton

Background: Longitudinal phenotypic data provides a rich potential resource for genetic studies which may allow for greater understanding of variants and their covariates over time. Herein, we review 3 longitudinal analytical approaches from the Genetic Analysis Workshop 19 (GAW19). These contributions investigated both genome-wide association (GWA) and whole genome sequence (WGS) data from odd numbered chromosomes on up to 4 time points for blood pressure–related phenotypes. The statistical models used included generalized estimating equations (GEEs), latent class growth modeling (LCGM), linear mixed-effect (LME), and variance components (VC). The goal of these analyses was to test statistical approaches that use repeat measurements to increase genetic signal for variant identification.

Results: Two analytical methods were applied to the GAW19: GWA using real phenotypic data, and one approach to WGS using 200 simulated replicates. The first GWA approach applied a GEE-based model to identify gene-based associations with 4 derived hypertension phenotypes. This GEE model identified 1 significant locus, GRM7, which passed multiple test corrections for 2 hypertension-derived traits. The second GWA approach employed the LME to estimate genetic associations with systolic blood pressure (SBP) change trajectories identified using LCGM. This LCGM method identified 5 SBP trajectories and association analyses identified a genome-wide significant locus, near ATOX1 (p = 1.0E−8 ). Finally, a third VC-based model using WGS and simulated SBP phenotypes that constrained the β coefficient for a genetic variant across each time point was calculated and compared to an unconstrained approach. This constrained VC approach demonstrated increased power for WGS variants of moderate effect, but when larger genetic effects were present, averaging across time points was as effective.

Conclusion: In this paper, we summarize 3 GAW19 contributions applying novel statistical methods and testing previously proposed techniques under alternative conditions for longitudinal genetic association. We conclude that these approaches when appropriately applied have the potential to: (a) increase statistical power; (b) decrease trait heterogeneity and standard error; (c) decrease computational burden in WGS; and (d) have the potential to identify genetic variants influencing subphenotypes important for understanding disease progression.

History

Publication title

BMC Genetics

Volume

17

Issue

Suppl 2

Pagination

26-84

ISSN

1471-2156

Department/School

Menzies Institute for Medical Research

Publisher

Biomed Central Ltd

Place of publication

Middlesex House, 34-42 Cleveland St, London, England, W1T 4Lb

Rights statement

Copyright 2016 Chiu et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the biological sciences; Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC