A variational model is formulated that accounts for the localization of deformation due to buckling under pure bending of thin-walled elastic tubes with circular cross-sections. Previous studies have successfully modelled the gradual process of ovalization of the cross-section with an accompanying progressive reduction in stiffness but these theories have had insufficient freedom to incorporate any longitudinal variation in the tube. Here, energy methods and small-strain nonlinear elastic theory are used to model the combined effects of cross-section deformation and localized longitudinal buckling. Results are compared with a number of case studies, including a nanotube, and it is found that the model gives rise to behaviours that correlate well with some published physical experiments and numerical studies.
History
Publication title
Royal Society of London. Proceedings. Mathematical, Physical and Engineering Sciences
Volume
462
Issue
2067
Pagination
817-838
ISSN
1364-5021
Department/School
School of Natural Sciences
Publisher
Royal Soc London
Place of publication
6 Carlton House Terrace, London, England, Sw1Y 5Ag