AbstractBy 1969 considerable data had been collected over Law Dome from surface measurements. These included surface elevation, ice thickness, accumulation rates, ice movement and strain-rates, surface mean temperatures, and several temperature-depth gradients. Since then core drilling up to 380 m in depth has been carried out from the summit to the coast where the cores reached close to the bed. The bore holes have been concentrated on two main flow lines: one to Cape Folger and the other to Cape Poinsett. The bore-hole temperatures give a clear indication of the temperature distribution throughout the ice cap.Numerical modelling shows that the measured deep temperatures closely match the steady-state temperature distribution calculated from the present regime. The variations in the temperature profiles over the dome are primarily associated with the flow regime.The Cape Folger line has low accumulation rates and low velocities which results in positive surface temperature-depth gradients increasing towards the coast. By contrast the Cape Poinsett line has high accumulation rates and high velocities which result in a large negative temperature-depth gradient there. The profile at the Dome summit is close to isothermal primarily due to the high accumulation rates and lack of horizontal motion.