University of Tasmania
Browse

File(s) under permanent embargo

Microfluidic primary culture model of the lower motor neuron-neuromuscular junction circuit

Modelling the complex process of neuromuscular signalling is key to understanding not only normal circuit function but also importantly the mechanisms underpinning a range of degenerative diseases. We describe a novel in vitro model of the lower motor neuron-neuromuscular junction circuit, incorporating primary spinal motor neurons, supporting glia and skeletal muscle. This culture model is designed to spatially mimic the unique anatomical and cellular interactions of this circuit in compartmented microfluidic devices, such that the glial cells are located with motor neuron cell bodies in the cell body chamber and motor neuron axons extend to a distal chamber containing skeletal muscle cells whilst simultaneously allowing targeted intervention. This model is suitable for use in conjunction with a range of downstream experimental approaches and could also be modified to utilise other cellular sources including appropriate immortal cell lines, cells derived from transgenic models of disease and also patient derived stem cells. © 2013 Elsevier B.V.

History

Publication title

Journal of Neuroscience Methods

Volume

218

Pagination

164-169

ISSN

0165-0270

Department/School

Menzies Institute for Medical Research

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright 2013 Elsevier

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC