posted on 2023-05-21, 11:08authored byJonathan Cloutier, Piercey, SJ, Huntington, J
Hyperspectral reflectance has the potential to provide rapid and low-cost mineralogical and chemical information that can be used to vector in mineral systems. However, the spectral signature of white mica and chlorite, despite numerous studies, is not fully understood. In this study, we review the mineralogy and chemistry of different white mica and chlorite types and investigate what mineralogical and chemical changes are responsible for the apparent shifts in the shortwave infrared (SWIR) spectroscopic absorption features. We demonstrate that the spectral signature of white mica is more complex than previously documented and is influenced by the Tschermak substitution, as well as the sum of interlayer cations. We show that an increase in the interlayer deficiencies towards illite is associated with a change from steep to shallow slopes between the wavelength position of the 2200 nm feature (2200 W) and Mg, Al-(VI) and Si. These changes in slope imply that white micas with different elemental chemistry may be associated with the same 2200 W values and vice versa, contrary to traditional interpretation. We recommend that traditional interpretations should only be used in true white mica with sum interlayer cations (I) > 0.95. The spectral signature of trioctahedral chlorite (clinochlore, sheridanite, chamosite and ripidolite) record similar spectral relationships to those observed in previous studies. However, dioctahedral Al-rich chlorite (sudoite, cookeite and donbassite) has a different spectral response with Mg increasing with 2250 W, which is the opposite of traditional trioctahedral chlorite spectral interpretation. In addition, it was shown that dioctahedral chlorite has a 2200 W absorption feature that may introduce erroneous spectral interpretations of white mica and chlorite mixtures. Therefore, care should be used when interpreting the spectral signature of chlorite. We recommend that spectral studies should be complemented with electron microprobe analyses on a subset of at least 30 samples to identify the type of muscovite and chlorite. This will allow the sum I of white mica to be obtained, as well as estimate the slope of 2200 W absorption trends with Mg, Al-(vi), and Si. Preliminary probe data will allow more accurate spectral interpretations and allow the user to understand the limitations in their hyperspectral datasets.
History
Publication title
Minerals
Volume
11
Issue
5
Pagination
1-16
ISSN
2075-163X
Department/School
School of Natural Sciences
Publisher
MDPI AG
Place of publication
Switzerland
Rights statement
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/)