The basal mass balance of the Amery Ice Shelf (AIS) in East Antarctica is investigated using a numerical ocean model. The main improvements of this model over previous studies are the inclusion of frazil formation and dynamics, tides and the use of the latest estimate of the sub-ice-shelf cavity geometry. The model produces a net basal melt rate of 45.6 Gt year−1 (0.74 m ice year−1) which is in good agreement with reviewed observations. The melting at the base of the ice shelf is primarily due to interaction with High Salinity Shelf Water created from the surface sea-ice formation in winter. The temperature difference between the coldest waters created in the open ocean and the in situ freezing point of ocean water in contact with the deepest part of the AIS drives a melt rate that can exceed 30 m of ice year−1. The inclusion of frazil dynamics is shown to be important for both melting and marine ice accretion (refreezing). Frazil initially forms in the supercooled water layer adjacent to the base of the ice shelf. The net accretion of marine ice is 5.3 Gt year−1, comprised of 3.7 Gt year−1 of frazil accretion and 1.6 Gt year−1 of direct basal refreezing.
History
Publication title
Journal of Geophysical Research
Volume
117
Issue
9
Article number
C09031
Number
C09031
Pagination
1-19
ISSN
0148-0227
Department/School
Institute for Marine and Antarctic Studies
Publisher
Amer Geophysical Union
Place of publication
2000 Florida Ave Nw, Washington, USA, Dc, 20009
Rights statement
Copyright 2012 American Geophysical Union
Repository Status
Restricted
Socio-economic Objectives
Oceanic processes (excl. in the Antarctic and Southern Ocean)