142122 - Modelling seasonal pasture growth and botanical composition at the paddock scale with satellite imagery.pdf (1.81 MB)
Modelling seasonal pasture growth and botanical composition at the paddock scale with satellite imagery
journal contribution
posted on 2023-05-20, 19:53 authored by Iffat AraIffat Ara, Matthew HarrisonMatthew Harrison, Whitehead, J, Waldner, F, Kerry BridleKerry Bridle, Louise GilfedderLouise Gilfedder, da Silva, JM, Marques, F, Richard RawnsleyRichard RawnsleySeasonal pasture monitoring can increase the efficiency of pasture utilization in livestock grazing enterprises. However, manual monitoring of pasture over large areas is often infeasible due to time and financial constraints. Here, we monitor changes in botanical composition in Tasmania, Australia, through application of supervised learning using satellite imagery (Sentinel-2). In the field, we measured ground cover and botanical composition over a twelve-month period to develop a supervised classification approach used to identify pasture classes. Across seasons and paddocks, the approach predicted pasture classes with 75-81% accuracy. Botanical composition varied seasonally in response to biophysical factors (primarily climate) and grazing behaviour, with seasonal highs in spring and troughs in autumn. Overall, we demonstrated that 10 m multispectral imagery can be reliably used to distinguish between pasture species as well as seasonal changes in botanical composition. Our results suggest that farmers and land managers should aim to quantify within-paddock variability rather than paddock average cover, because the extent and duration of very low ground cover puts the paddock/field at risk of adverse grazing outcomes, such as soil erosion and loss of pasture biomass, soil carbon and biodiversity. Our results indicate that satellite imagery can be used to support grazing management decisions for the benefit of pasture production and the improvement of environmental sustainability.
Funding
Department of Agriculture and Water Resources
History
Publication title
In Silico PlantsArticle number
diaa013Number
diaa013ISSN
2517-5025Department/School
Tasmanian Institute of Agriculture (TIA)Publisher
Oxford University PressPlace of publication
United KingdomRights statement
© The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Repository Status
- Open