Andre_et_al_2009b.pdf (771.25 kB)
Modelling size-at-age in wild immature female octopus: a bioenergetics approach
journal contribution
posted on 2023-06-23, 11:05 authored by J Andre, Gretta PeclGretta Pecl, EPM Grist, Jayson SemmensJayson Semmens, M Haddon, S LeporatiThe population dynamics of cephalopods are poorly understood because intra-specific size-at-age is characteristically variable. Much of the variation observed is attributed to temperature and food, but other generally overlooked factors such as hatchling size and inherent growth capacities also affect size-at-age. In the present paper, we investigated the relative influence of the principal abiotic (environmental temperature) and biotic (food consumption, hatchling size, inherent growth capacity) factors affecting size-at-age in immature octopus. Using a bioenergetics model and size-at-age data of wild-caught immature Octopus pallidus, we simulated the juvenile growth trajectories of individuals hatched in different seasons (summer, autumn and winter) based on food availability, metabolism, environmental temperature and individual variability, under an assumption of 2- phase growth. Simulations predict that the effect of hatchling size on size-at-age was secondary to that of inherent growth capacity. Projections suggest that wild immature populations comprise a mixture of individuals displaying exponential growth and 2-phase growth and that the proportion of each depends primarily on the individuals' inherent growth capacities and food availability. High food intake was projected to decrease the number of individuals displaying 2-phase growth by delaying the transition between the 2 growth phases, resulting in larger individuals. Overall, individuals hatched in summer grew to larger sizes and matured earlier than individuals hatched in autumn or winter, independent of food availability. The size-at-age distribution of the summer and autumn cohorts tended to become bimodal under certain food intake levels, which highlights the importance of coupling size data with accurate age estimates in future octopus population studies.
History
Publication title
Marine Ecology Progress SeriesVolume
384Issue
MayPagination
159-174ISSN
0171-8630Department/School
Sustainable Marine Research CollaborationPublisher
Inter-ResearchPublication status
- Published
Related links
Rights statement
Copyright Copyright 2009 InterResearch. This article has been integrated as chapter four of a doctoral dissertation available via the related url.Repository Status
- Open