University of Tasmania
Browse

File(s) not publicly available

Modelling the interactions between water and nutrient uptake and root growth

journal contribution
posted on 2023-05-16, 19:23 authored by Dunbabin, VM, Diggle, A, Rengel, Z, Hugtem, R
A model of three-dimensional root growth has been developed to simulate the interactions between root systems, water and nitrate in the rooting environment. This interactive behaviour was achieved by using an external-supply/internal-demand regulation system for the allocation of endogenous plant resources. Data from pot experiments on lupins heterogeneously supplied with nitrate were used to test and parameterise the model for future simulation work. The model reproduced the experimental results well (R2 = 0.98), simulating both the root proliferation and enhanced nitrate uptake responses of the lupins to differential nitrate supply. These results support the use of the supply/demand regulation system for modelling nitrate uptake by lupins. Further simulation work investigated the local uptake response of lupins when nitrate was supplied to a decreasing fraction of the root system. The model predicted that the nitrate uptake activity of lupin roots will increase as the fraction of root system with access to nitrate decreases, but is limited to an increase of around twice that of a uniformly supplied control. This work is the first example of a modelled root system responding plastically to external nutrient supply. This model will have a broad range of applications in the study of the interactions between root systems and their spatially and temporally heterogeneous environment.

History

Publication title

Plant and Soil

Volume

239

Pagination

19-38

ISSN

0032-079X

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Plant and Soil

Place of publication

UK

Repository Status

  • Restricted

Socio-economic Objectives

Wheat

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC